CS 7800: Advanced Algorithms

Class 15: More Infractability

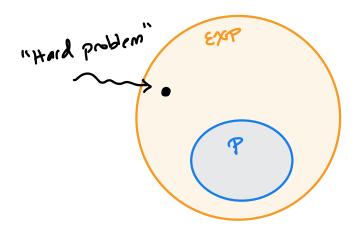
- NP-Completeness
- More hardness: knapsack, hamiltonian path
 Jonathan Ullman

October 24, 2025

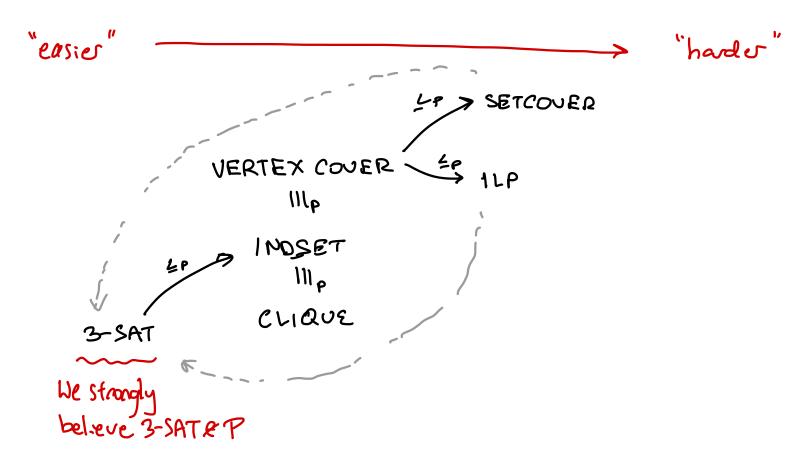
Tractable and Intractable Problems

• **Definition:** \mathcal{P} is the set of decision problems that can be solved in polynomial time

- **Definition**: \mathcal{EXP} is the set of decision problems that can be solved in exponential time
- Theorem: $\mathcal{P} \neq \mathcal{E}\mathcal{X}\mathcal{P}$

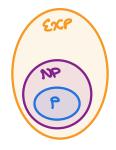


Allegedly Intractable Problems



Note: Reductions are transitive

The Class NP



- **Definition:** \mathcal{NP} is the class of problems for which there is an efficient verifier for solutions
 - An algorithm V is an efficient verifier for problem A if
 - (1) V takes as input I and a solution S
 - (2) V is a polynomial-time algorithm
 - (3) $I \in A$ if and only if there exists a polynomial-size solution S such that V(I,S) = YES

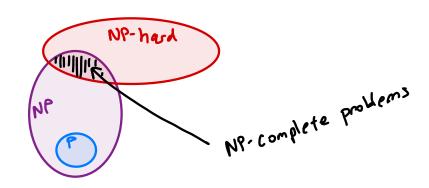
If answer on input I is YES

- \mathcal{P} = easy to solve, $\mathcal{N}\mathcal{P}$ = easy to check solution
- Natural hard optimization problems are in $\mathcal{N}P$
 - 3-SAT, Vertex-Cover, Independent-Set...

Does $\mathcal{P} = \mathcal{NP}$?

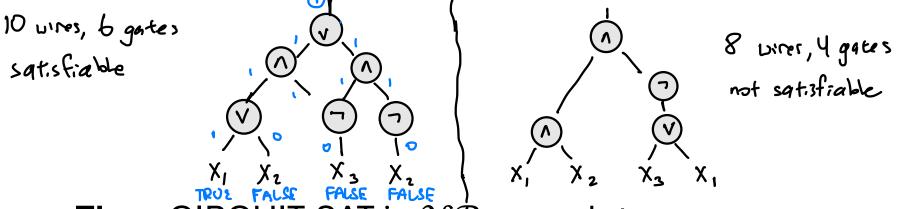
P≠NP

- We do not know, but we believe tvery strongly!
 - One of the Millenium Problems
- If we believe $\mathcal{P} \neq \mathcal{NP}$ what does that tell us about problems we care about?
 - **Def**: B is \mathcal{NP} -hard if for $A \in \mathcal{NP}$, $A \leq_P B$
 - **Def**: B is \mathcal{NP} -complete if $B \in \mathcal{NP}$ and B is \mathcal{NP} -hard
 - If B is \mathcal{NP} -hard and $B \in \mathcal{P}$ then $\mathcal{P} = \mathcal{NP}$



- The Circuit Satisfiability Problem (CKT-SAT)
 - Input: Circuit ${\it C}$ with n wires and AND/OR/NOT gates

• Output: Decide if there exists x such that C(x) = 1

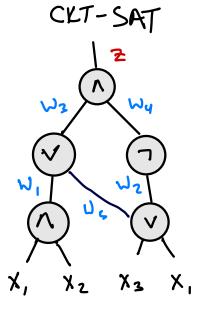


• Thm: CIRCUIT-SAT is NP-complete

Cook 171, Levin 173 Part 1

(=) 3 SAT IS NPC)

• Thm (Cook '71, Levin '73): CKT-SAT \leq_P 3-SAT



Given a circuit with m wires and n variables, decide if there exists x such that C(x)=1

Gadget for each of the three gates

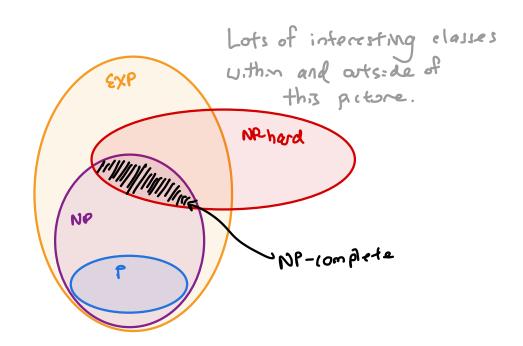
AND
$$\omega = \alpha \wedge b \longrightarrow (\omega \vee \bar{a} \vee \bar{b})^{\wedge} (\bar{\omega} \vee a)^{\wedge} (\bar{\omega} \vee b)$$

OR $\omega = a \vee b \longrightarrow (\bar{u} \vee a \vee b)^{\wedge} (\omega \vee \bar{a})^{\wedge} (\omega \vee \bar{b})$

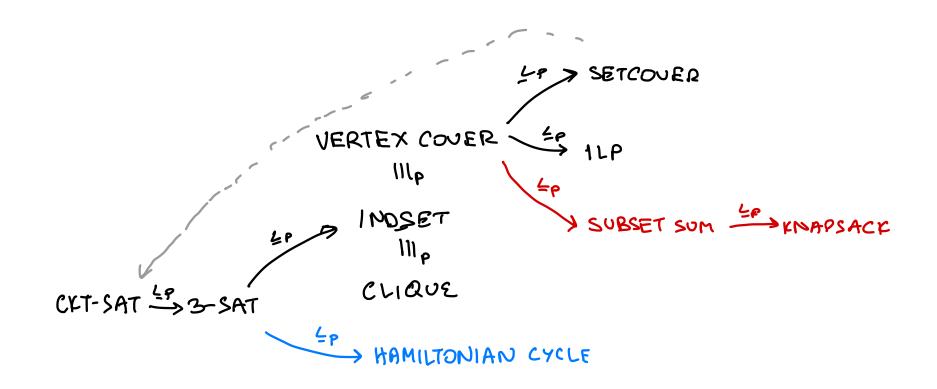
NOT $\omega = \neg a \longrightarrow (\bar{u} \vee \bar{a})^{\wedge} (\omega \vee \bar{a})$

(>3-SAT IZ NPC)

- Thm (Cook '71, Levin '73): CKT-SAT \leq_P 3-SAT
 - Now we know IND-SET, CLIQUE, VERTEX-COVER, SET-COVER, IP, and 3-SAT are all \mathcal{NP} -complete
 - There are thousands more known \mathcal{NP} -complete problems in essentially every area within CS



NP-Complete Problems Allegedly Intractable Problems



SUBSET-SUM/KNAPSACK

SUBSET-SUM:

Input: integers Z,...Z, 20 target T20

Output: decide it there exists SEEI,..., n3 such that T= I z;

Special case of KNAPSACK

 \Rightarrow Can solve in time $O(n2^n)$ or time O(nT)

brite force dynamiz programming

· Is SUBSET-SUMEP? Not a P-time algorithm

#of bits is (n+1) log T

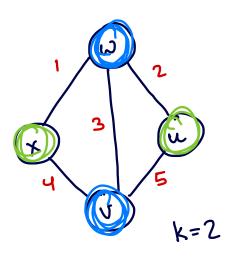
VERTEX COVER 4P SUBSET SUM

VERTER COVER

4_P

SUBSET SUM

Graph G=(V,E) Number K



Does G have a vertex cover of size exactly k

Went: A set of numbers Z₁₃..., Ze and T such that there is a subset summing to T iff there is a vertex conver MSD Digits —— MSD

	size	XU	uu	٧٧	χV	w	1211011
هر	_1	O	١	0	0	1	211011
-> au	1	0	0	1	ſ	l	\ - 41211
→ au	ſ	1	1	l	0	0	7211211
ax		1	0	0	l	0	312212
- bxv	0	1	0	0	0	O	
- buu	0	0	1	0	0	0	blue -> #s
bur	0	0	Ð	1	0	O	_
-> bxv	0	0	O	0	ſ	O	- 222222
>> buv		0	0	<u>ට</u>	0	1	size

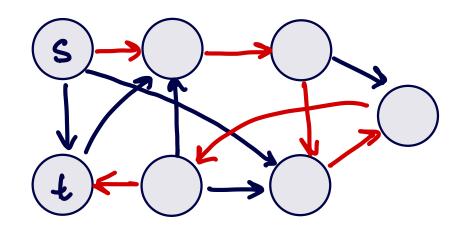
Set T=222222

HAMILTONIAN PATH

HAMP:

Input: A directed graph G=(V, E) and noder s, tev

Output: Decide if there is an s-t path that visits every node exactly once



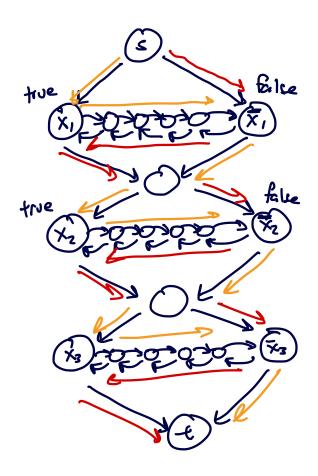
3-SAT 4, HAMP

HAMP

$$\wedge (\overline{x}, \sqrt{x}, \sqrt{x})$$

$$\sqrt{(x', x \times^5 x \times^3)}$$

Variable gadgets



Any path traverses each variable left-to-right (TRUE) or right-to-left (FALSE)

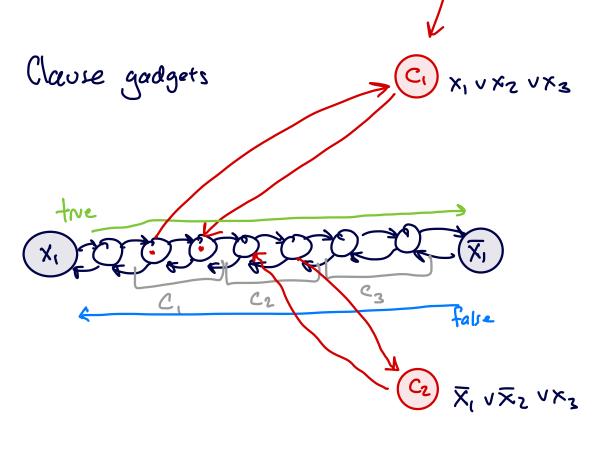
3-SAT 4, HAMP

HAMP

$$\mathcal{C}(x) = (x_1 \vee x_2 \vee x_3)^{C_1}$$

$$\wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)^{C_2}$$

$$\wedge (x_1 \vee \overline{x_2} \vee \overline{x_3})^{C_3}$$



nodes representing

3-SAT 4, HAMP

HAMP

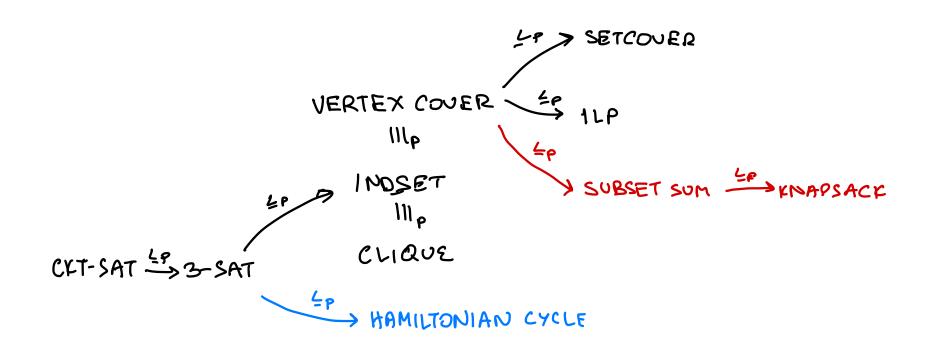
$$\mathcal{C}(x) = (x_1 \vee x_2 \vee x_3)^{C_1}$$

$$\wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)^{C_2}$$

$$\wedge (x_1 \vee \overline{x_2} \vee \overline{x_3})^{C_3}$$

Clause gadgets

NP- Complete Problems Allegedly Intractable Problems



(>3-SAT IZ NPC)

- Thm (Cook '71, Levin '73): CKT-SAT \leq_P 3-SAT
 - Now we know IND-SET, CLIQUE, VERTEX-COVER, SET-COVER, IP, and 3-SAT are all \mathcal{NP} -complete
 - There are thousands more known \mathcal{NP} -complete problems in essentially every area within CS

