CS 7800: Advanced Algorithms

Class 14: Reductions and Intractability

- Finish Image Segmentation
- NP-Completeness

Jonathan Ullman October 17, 2025

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
 - whether pixel i is in the foreground or background
 - whether pair (i,j) are likely to go together

Image Segmentation

Input:

- a directed graph G = (V, E)
 - *V* = "pixels", *E* = "pairs"
- likelihoods $a_i, b_i \geq 0$ for every $i \in V$
- separation penalty $p_{ij} \ge 0$ for every $(i,j) \in E$

• Output:

• a partition of V into (A, B) that maximizes

$$q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{cut by } A,B}} p_{ij}$$

Reduction to MinCut

- Differences between SEG and MINCUT:
 - SEG asks us to maximize, MINCUT asks us to minimize

$$\max_{A,B} \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij} \qquad \qquad \min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij}$$

• SEG allows any partition, MINCUT requires $s \in A$, $t \in B$

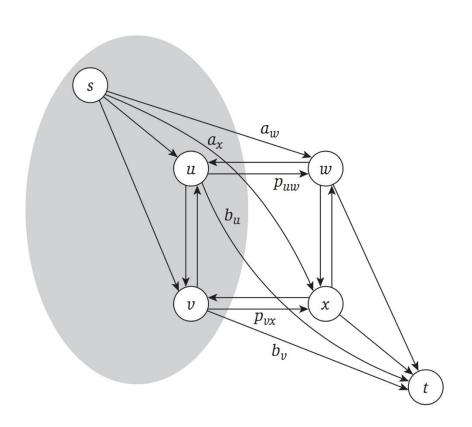
• SEG counts any cut edge, MINCUT counts $A \rightarrow B$ edges

Reduction to MinCut

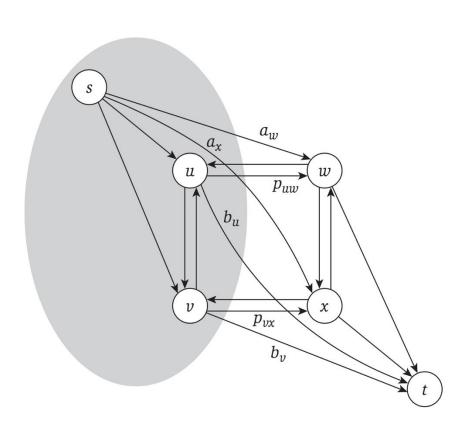
 How can we set up a flow network where the cost of the segmentation is the capacity of a cut

$$\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij}$$

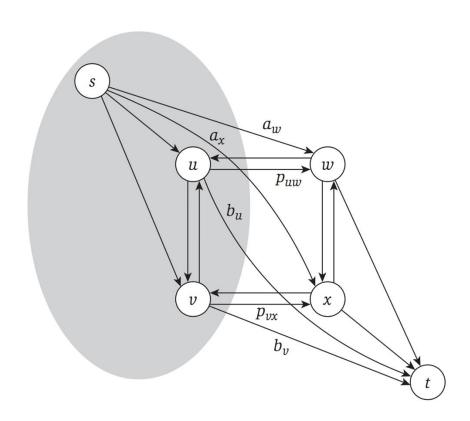
Step 1: Transform the Input



Step 2: Receive the Output



Step 3: Transform the Output



Summary

Solving minimum s-t cut in a graph with. n+2 nodes and 2m+2n edges in time T

Solving image segmentation in a graph with n nodes and m edges in time T + O(m)

• Can solve image segmentation in O(mn) time

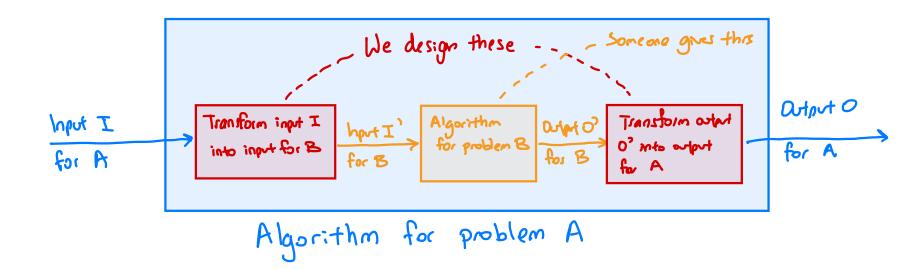
Flow Applications Summary

- Network flow algorithms are powerful
 - Can use them to solve many optimization problems
 - Improvements for maxflow implies lots of new algorithms
- Many natural applications
 - Bipartite matching
 - Image segmentation
 - Airline scheduling
 - Fair division
 - Auction design
 - ...
- Maxflow-Mincut duality (often) implies interesting duality theorems for these problems

Reductions

Reduction: Problem A reduces to Problem B if there is a polynomial-time algorithm that solves A using any efficient algorithm that solves B.

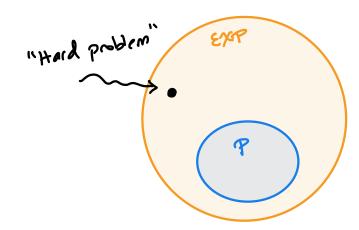
- Denoted $A \leq_P B$ (i.e. "A is at most as hard as B")
- View 1: If B can be solved efficiently then so can A
- View 2: If A can't be solved efficiently then neither can B



Tractable and Intractable Problems

• **Definition:** $\mathcal P$ is the set of decision problems that can be solved in polynomial time

- **Definition**: \mathcal{EXP} is the set of decision problems that can be solved in exponential time
- Theorem: $\mathcal{P} \neq \mathcal{E}\mathcal{X}\mathcal{P}$



INDSET = CLIQUE = VERTEX COVER

Reduction in both directions ("Equally hard")

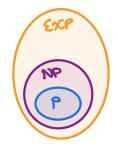
VERTEX COVER LP SET COVER

VERTEX COVER &p ILP (O/1 Integer Linear Programming)

3-SAT = INDSET

Note: Reductions are transitive

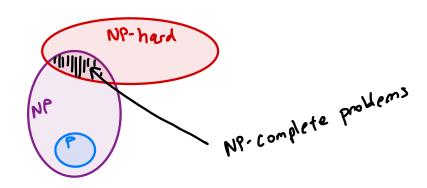
The Class NP



- **Definition:** \mathcal{NP} is the class of problems for which there is an efficient verifier for solutions
 - An algorithm V is an efficient verifier for problem A if
 - (1) V takes as input I and a solution S
 - (2) V is a polynomial-time algorithm
 - (3) $I \in A$ if and only if there exists a polynomial-size solution S such that V(I,S) = YES
- \mathcal{P} = easy to solve, \mathcal{NP} = easy to check solution
- Natural hard optimization problems are in $\mathcal{N}P$
 - 3-SAT, Vertex-Cover, Independent-Set...

Does $\mathcal{P} = \mathcal{NP}$?

- We do not know, but we believe it very strongly!
 - One of the Millenium Problems
- If we believe $\mathcal{P} \neq \mathcal{NP}$ what does that tell us about problems we care about?
 - **Def**: B is \mathcal{NP} -hard if for $A \in \mathcal{NP}$, $A \leq_P B$
 - **Def:** B is \mathcal{NP} -complete if $B \in \mathcal{NP}$ and B is \mathcal{NP} -hard
 - If B is \mathcal{NP} -hard and $B \in \mathcal{P}$ then $\mathcal{P} = \mathcal{NP}$



- The Circuit Satisfiability Problem (CKT-SAT)
 - Input: Circuit C with n wires and AND/OR/NOT gates
 - Output: Decide if there exists x such that C(x) = 1

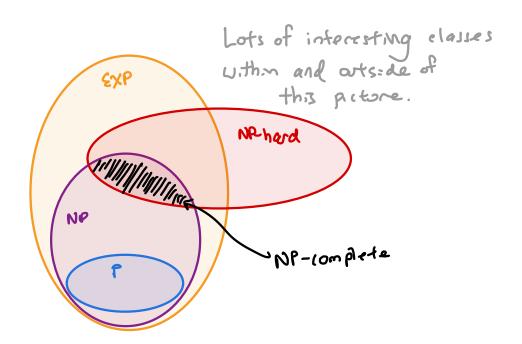
• Thm: CIRCUIT-SAT is \mathcal{NP} -complete

(=) 3 SAT IS NPC)

• Thm (Cook '71, Levin '73): CKT-SAT \leq_P 3-SAT

(>3-SAT 12 NPC)

- Thm (Cook '71, Levin '73): CKT-SAT \leq_P 3-SAT
 - Now we know IND-SET, CLIQUE, VERTEX-COVER, SET-COVER, IP, and 3-SAT are all \mathcal{NP} -complete
 - There are thousands more known \mathcal{NP} -complete problems in essentially every area within CS



- Thm (Cook '71, Levin '73): CKT-SAT \leq_P 3-SAT
 - Now we know IND-SET, CLIQUE, VERTEX-COVER, SET-COVER, IP, and 3-SAT are all \mathcal{NP} -complete
 - There are thousands more known \mathcal{NP} -complete problems in essentially every area within CS