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Image Segmentation

* Separate image into foreground and background

* We have some idea of:
* whether pixeliisin the foreground or background
* whether pair (i,j) are likely to go together



Image Segmentation

* Input:
* adirected graph G = (V,E)
IV =“pixels”, E =*“pairs”
* likelihoods a;, b; = 0 foreveryi € V
* separation penalty p;; = 0 forevery (i,j) € E

* OQutput:
* a partition of IV into (4, B) that maximizes
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Reduction to MinCut

 Differences between SEG and MINCUT:

e SEG asks us to maximize, MINCUT asks us to minimize
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 SEG counts any cut edge, MINCUT counts A — B edges



Reduction to MinCut

* How can we set up a flow network where the
cost of the segmentation is the capacity of a cut
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Step 1: Transform the Input
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Step 2: Receive the Output
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Step 3: Transform the Output
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Summary

Solving minimum s-t cut in a graph with.
n+ 2 nodesand 2m + 2n edgesintime T

!

Solving image segmentation in a graph withn
nodes and m edgesintime T + O(m)

 Can solve image segmentation in O(mn) time



Flow Applications Summary

* Network flow algorithms are powerful
* Canusethem to solve many optimization problems
* Improvements for maxflow implies lots of new algorithms

* Many natural applications
* Bipartite matching

Image segmentation

Airline scheduling

Fair division

Auction design

* Maxflow-Mincut duality (often) implies interesting duality
theorems for these problems



Reductions

Reduction: Problem A reduces to Problem B

If there is a polynomial-time algorithm that solves

A using any efficient algorithm that solves B.
* Denoted A <, B (i.e. “Aisat mostas hard as B”)

* View 1: If B can be solved efficiently then so can A
* View 2: If A can’t be solved efficiently then neithercan B

- We design these - .

7
’

/
\npt T Tranforn it T
£oc B inko iogek Bor B

S

~

ransTorn ostadt
? mto oviput

o -| 1/

Output (o

Px\gar:—ﬂr\m foc problem A

for A



Tractable and Intractable Problems

* Definition: P is the set ofildecision problems
that can be solved in polynomial time

* Definition: EXP is the set of decision problems
that can be solved in exponential time

* Theorem: P # EXP
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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Allegedly Intractable Problems
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The Class NP
D)

* Definition: NP is the class of problems for which
there is an efficient verifier for solutions

* An algorithm I/ is an efficient verifier for problem A if
* (1) V takes as input I and a solution S
* (2) V is a polynomial-time algorithm

* (3) I € Aif and onlyif there exists a polynomial-size solution
S suchthatV(l,S) = YES

« P = easyto solve, NP = easyto check solution

 Natural hard optimization problems are in N P
* 3-SAT, Vertex-Cover, Independent-Set...



Does P = NP?

* We do not know, but we believe it very strongly!
e One of the Millenium Problems

* |f we believe P +# NP what does that tell us
about problems we care about?
* Def: Bis NP-hardifforAe NP,A <, B
* Def: Bis NP-completeif B € NP and B is NP-hard
e fBisNP-hardand B € Pthen®P = NP



What problems are N P-complete?

* The Circuit Satisfiability Problem (CKT-SAT)
* Input: Circuit C with n wires and AND/OR/NOT gates
e Output: Decide if there exists x suchthat C(x) = 1

¢t o) (ool '7(,Levm ‘73

 Thrrfs CIRCUIT-SAT is V'P-complete



What problems are N P-complete?
(= 23aT s 0PC)

* Thm (Cook ‘71, Levin ‘73): CKT-SAT <p 3-SAT



What problems are N P-complete?

(=>3~sm z NPCD
* Thm (Cook ‘71, Levin ‘73): CKT-SAT <p 3-SAT
* Now we know IND-SET, CLIQUE, VERTEX-COVER,
SET-COVER, IP, and 3-SAT are all N P-complete

 There are thousands more known N P-complete
problems in essentially every area within CS
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What problems are N P-complete?

* Thm (Cook ‘71, Levin ‘73): CKT-SAT <p 3-SAT

e Now we know IND-SET, CLIQUE, VERTEX-COVER,
SET-COVER, IP, and 3-SAT are all N P-complete

 There are thousands more known N P-complete
problems in essentially every area within CS



