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Network Flow Summary

 First Pass: Can solve maximum flow in time O(m - v*)
* Canbevery slow when capacities are large
* Cannot be improved if we allow arbitrary augmenting paths
* Always finds an integer max flow when capacities are integers

* Second Pass: Improved running time via better paths
» Widest Augmenting Path: O(m - log v*)
* Shortest Augmenting Path: 0(m?*n)

e Still actively studied!
¢ Can solve maximum flow in O(mn) using augmenting path* algos
« Recent Breakthrough: Can solve maximum flow in time* m1+o(1)

* Today: Using maximum-flow/minimum-cut as a building
block for solving many more problems



Maximum Bipartite Matching

* Input: bipartite graph ¢ = (V,E)withV =LUR
* Output: a matching of maximum size

* Amatching M C E is a set of edges such that every
node v is an endpoint of at most one edge in M

e Size = |M|

Models any problem where one type
of object is assighed to another
type:

* doctorsto hospitals

* jobsto processors

* advertisements to websites



Mechanics of Reductions

* Theorem: There is an efficient algorithm that
solves maximum bipartite matching (MBM) using
an algorithm that solves integer max s-t flow (MF)

valid input y . valid input x
for problem B for problem A

solver for A
(black-box)

valid output Q‘_) valid output
v € B(y) u € A(x)



Step 1: Transform the Input

\npd‘ G=(v,ED
for MPM



Step 2: Receive the Output

valid network

G' for MF
solver
for MF
black-box
valid MF f’ for ( )
network G’

Black arrowmeans f'(e) = 0



Step 3: Transform the Output

valid MBM M « valid MF f' for
network G’

for graph G

M"—%a“ L >R edges urth 'F)(ﬂ)ﬂ’i




Correctness

* Need to show:
* Our algorithm returns a matching
* Our algorithm returns a maximum matching



Correctness

* Our algorithm returns a matching
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Correctness

* Out algorithm returns a maximum matching
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Correctness

* Out algorithm returns a maximum matching
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Running Time

* Need to analyze:
* Time to transform the input
- Time to run the max-flow solver — O(#n )
* Time to transform the otuput
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Maximum Bipartite Matching Summary

Solve maximum s-t flow in a graph with n + 2
nodesand m + nedgesandc(e) = 1lintimeT

!

Solve maximum bipartite matching in a graph
with n nodes and m edgesintime T + O(m)

* Can solve max bipartite matching in time
O (nm) using Ford-Fulkerson

* Improvement for maximum flow gives improvement
for maximum bipartite matching!



Hall’'s Theorem

* How can we tell that a graph does not have a
perfect matching?
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Proof of Hall’'s Theorem via Duality
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Image Segmentation

* Separate image into foreground and background

* We have some idea of:
* whether pixeliisin the foreground or background
* whether pair (i,j) are likely to go together



Image Segmentation

* Input:
* adirected graph G = (V,E)
IV =“pixels”, E =*“pairs”
* likelihoods a;, b; = 0 foreveryi € V
* separation penalty p;; = 0 forevery (i,j) € E

* OQutput:
* a partition of IV into (4, B) that maximizes

AAB) = ) a+ ) b— > py

i€A jEB (i,j)EE
cut by A,B



mMmin
Reduction to MinCut ** * X 4.,
mio .ga'.’r‘a:—'-\‘ "

A

e Differences between SEG and MINCUT:
e SEG asks us to maximize, MINCUT asks us to minimize
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btw A and B btw A and B

Man; ~iented ‘aasw et PR
 SEG allows any partition, MINCUT requiress € A,t € B
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 SEG counts any cut edge, MINCUT counts A — B edges



Reduction to MinCut

* How can we set up a flow network where the
cost of the segmentation is the capacity of a cut

min > bi+ ) g+ )

i€A jEB (i,j)EE
btw A and B




Step 1: Transform the Input




Step 2: Receive the Output




Step 3: Transform the Output




Summary

Solving minimum s-t cut in a graph with.
n+ 2 nodesand 2m + 2n edgesintime T

!

Solving image segmentation in a graph withn
nodes and m edgesintime T + O(m)

 Can solve image segmentation in O(mn) time



Flow Applications Summary

* Network flow algorithms are powerful
* Canusethem to solve many optimization problems
* Improvements for maxflow implies lots of new algorithms

* Many natural applications
* Bipartite matching

Image segmentation

Airline scheduling

Fair division

Auction design

* Maxflow-Mincut duality (often) implies interesting duality
theorems for these problems



