CS 7800: Advanced Algorithms

Class 13: Network Flow Applications

- Reductions
- Bipartite Matching

Jonathan Ullman October 17, 2025

Network Flow Summary

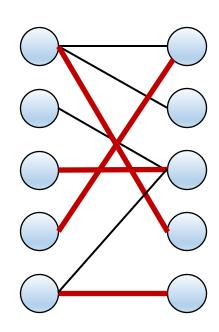
- First Pass: Can solve maximum flow in time $O(m \cdot v^*)$
 - Can be very slow when capacities are large
 - Cannot be improved if we allow arbitrary augmenting paths
 - Always finds an integer max flow when capacities are integers
- Second Pass: Improved running time via better paths
 - Widest Augmenting Path: $O(m \cdot \log v^*)$
 - Shortest Augmenting Path: $O(m^2n)$
- Still actively studied!
 - Can solve maximum flow in O(mn) using augmenting path* algos
 - Recent Breakthrough: Can solve maximum flow in time* $m^{1+o(1)}$
- Today: Using maximum-flow/minimum-cut as a building block for solving many more problems

Maximum Bipartite Matching

- Input: bipartite graph G = (V, E) with $V = L \cup R$
- Output: a matching of maximum size
 - A matching $M \subseteq E$ is a set of edges such that every node v is an endpoint of at most one edge in M
 - Size = |M|

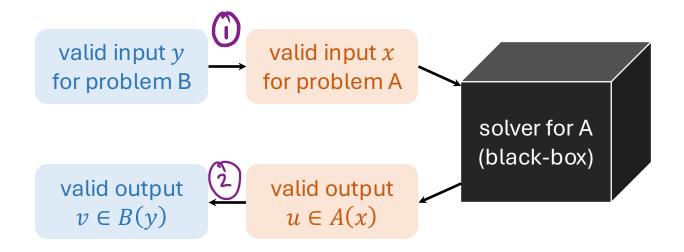
Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites



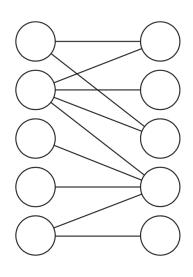
Mechanics of Reductions

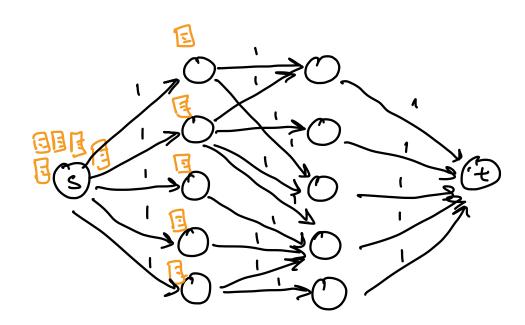
• **Theorem:** There is an efficient algorithm that solves maximum bipartite matching (MBM) using an algorithm that solves integer max s-t flow (MF)



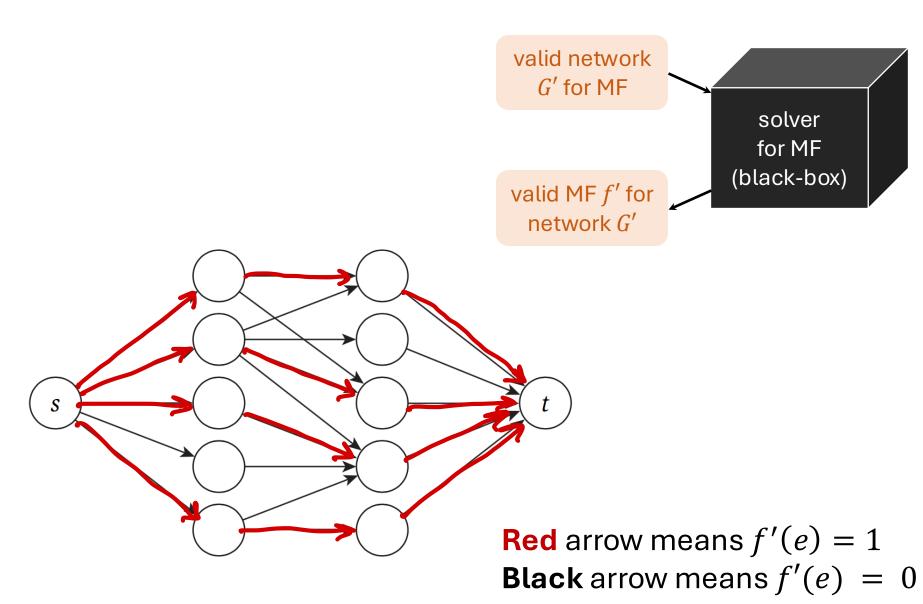
Step 1: Transform the Input

Input G=(VE)
for MBM





Step 2: Receive the Output

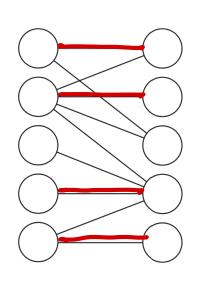


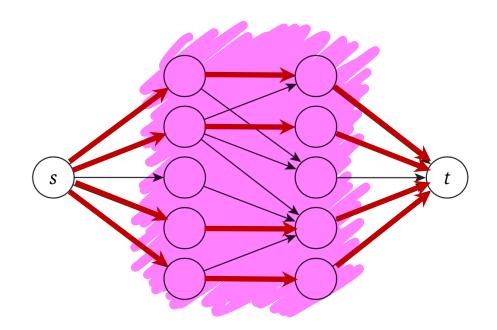
Step 3: Transform the Output

valid MBM M for graph G

valid MF f' for network G'

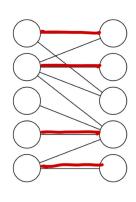
M= & all L→R edges with f(e)=13

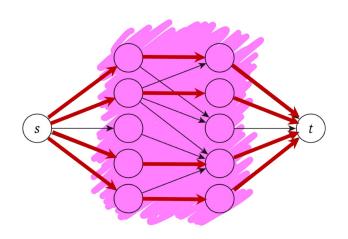




- Need to show:
 - Our algorithm returns a matching
 - Our algorithm returns a maximum matching

Our algorithm returns a matching



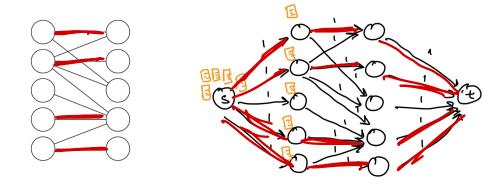


- every node in L has
 I incoming edge, has
 at most I wit mooming flow
- every node in L has
 at most one oxtgoing
 edge of flow 1
- every node in Lis in at most I pair in the notching
- "same for noder in R"

Out algorithm returns a maximum matching

Claim: Ghos a matching of size k if and only if G' has a flow of value k

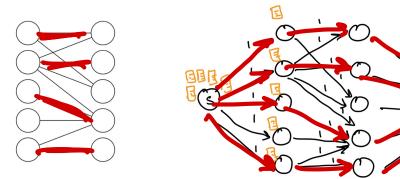
1) Matching of size k => Flow of value k



Out algorithm returns a maximum matching

Claim: Ghos a matching of size k if and only if G' has a flow of value k

1) Matching of size k Flow of value k



Running Time

- Need to analyze:
 - Time to transform the input $\rightarrow O(m)$
 - Time to run the max-flow solver $\rightarrow O(mn)$
 - Time to transform the otuput $\rightarrow \mathcal{O}(m)$
 - Assuming we can solve max flow on networks with n' nodes and m'edges in time O(m'n')
 - Our reduction takes a graph Lith in noder, medges and outputs a network with n'=n+2 nodes, and m'=m+n edges O(m+n)(n+2)=O(mn)

Maximum Bipartite Matching Summary

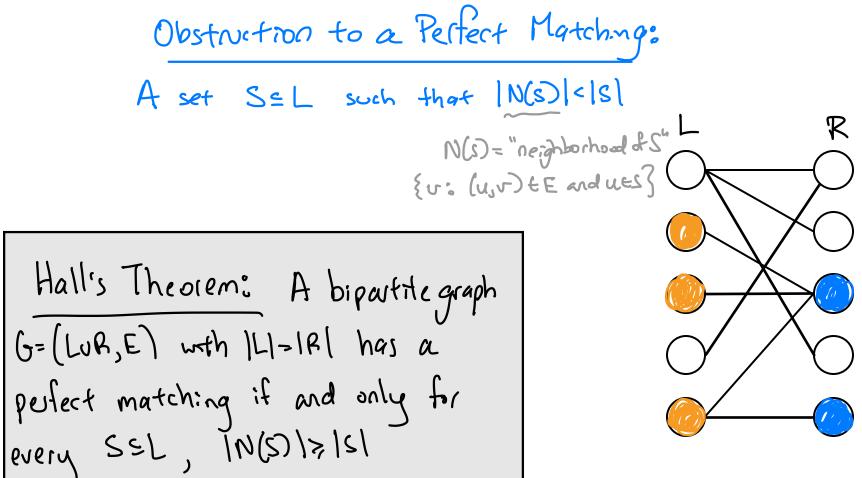
Solve maximum s-t flow in a graph with n+2 nodes and m+n edges and c(e)=1 in time T

Solve maximum bipartite matching in a graph with n nodes and m edges in time T + O(m)

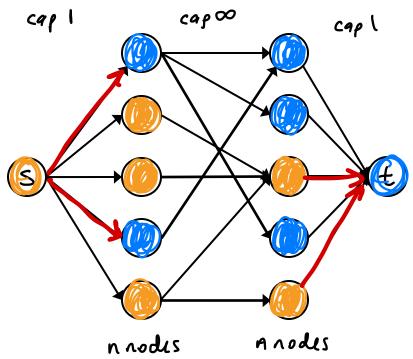
- Can solve max bipartite matching in time O(nm) using Ford-Fulkerson
 - Improvement for maximum flow gives improvement for maximum bipartite matching!

Hall's Theorem

 How can we tell that a graph does not have a perfect matching?



Proof of Hall's Theorem via Duality



- . Observation: Min cut A,B does not cut any L→R edges
- · For every node in LA all of its neighbors are also in A

•
$$cap(A_3B) = |L \setminus A| + |N(L^nA)|$$

 $cap(A_3B) = n - |L^nA| + |N(L^nA)|$
 $|N(L^nA)| = |L^nA| + (cap(A_3B) - n)$

If the value of the max flow is < n then IN(LOA) < ILOAI

If there is no perfect matching then I SEL s.t. IN(S) | < | S|

 $|N(L^0A)| = |L^0A| + (val(f^*) - n)$

Image Segmentation

- Separate image into foreground and background
- We have some idea of:
 - whether pixel i is in the foreground or background
 - whether pair (i,j) are likely to go together

Image Segmentation

Input:

- a directed graph G = (V, E)
 - *V* = "pixels", *E* = "pairs"
- likelihoods $a_i, b_i \geq 0$ for every $i \in V$
- separation penalty $p_{ij} \ge 0$ for every $(i,j) \in E$

• Output:

• a partition of V into (A, B) that maximizes

$$q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{cut by } A,B}} p_{ij}$$

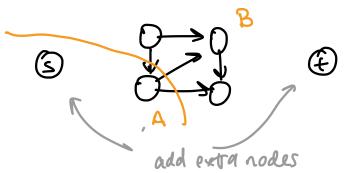
- - SEG asks us to maximize, MINCUT asks us to minimize

$$\max_{A,B} \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij}$$

$$\max_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij}$$

$$\max_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij}$$

• SEG allows any partition, MINCUT requires $s \in A$, $t \in B$



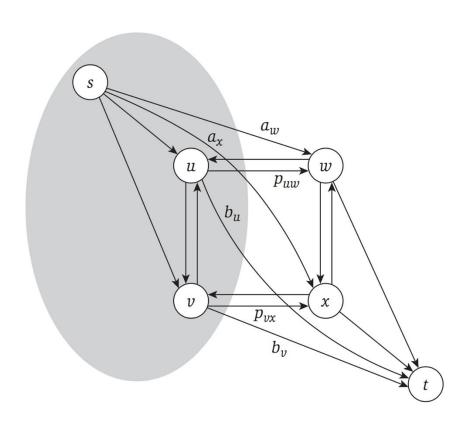
• SEG counts any cut edge, MINCUT counts $A \rightarrow B$ edges

Reduction to MinCut

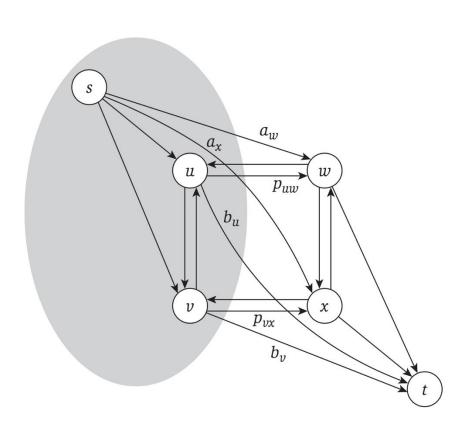
 How can we set up a flow network where the cost of the segmentation is the capacity of a cut

$$\min_{A,B} \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ \text{btw } A \text{ and } B}} p_{ij}$$

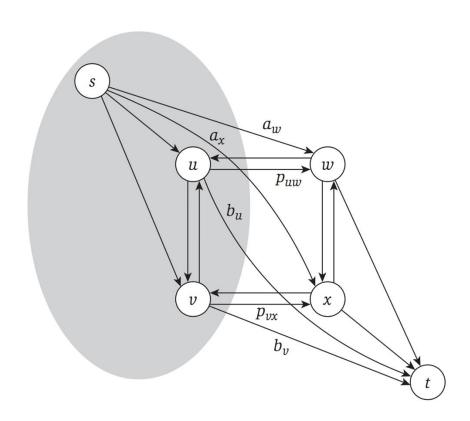
Step 1: Transform the Input



Step 2: Receive the Output



Step 3: Transform the Output



Summary

Solving minimum s-t cut in a graph with. n+2 nodes and 2m+2n edges in time T

Solving image segmentation in a graph with n nodes and m edges in time T + O(m)

• Can solve image segmentation in O(mn) time

Flow Applications Summary

- Network flow algorithms are powerful
 - Can use them to solve many optimization problems
 - Improvements for maxflow implies lots of new algorithms
- Many natural applications
 - Bipartite matching
 - Image segmentation
 - Airline scheduling
 - Fair division
 - Auction design
 - ...
- Maxflow-Mincut duality (often) implies interesting duality theorems for these problems