CS7800: Advanced Algorithms

Class II: Linear Programming III

- · Minmax Theorem
- · Algorithms for LPs

Jonathan Ullman October 14, 2025

Exam Recap

- · Median score: 74/90 ≈ 82%
- · Wide range of grades

· Feel free to ask about your course grade any time

Strong LP Duality

Theorem: If the primal and dual are both feasible then they have the same optimal value

(P) max
$$e^{T}x$$
 (D) min $b^{T}y$ y y s.t. $A \times 4b$ s.t. $y^{T}A \geqslant 6$ $y \geqslant 0$

Special cases:

- 1) If the dual is infeasible, the primal is unbounded
- 2) If the dual is unbounded, the primal is infeasible

Application: The Minimar Theorem

Zero-Sum Games:

- · Two players Rovena and Colin
- · Rovera chooses an action in [m] Colm chooses in [n]

· Players can play randomly

Rowera:
$$C = (r_1, r_m)$$
 $\sum_{i} c_i = 1$ $c_i > 0$
 $C = (c_1, c_n)$ $\sum_{i} c_j = 1$ $c_i > 0$ $\sum_{i} c_i c_j A_{ij} = r^T A_C$

Rowera's expected payoff is

Application: Minimax Thm

How would Rowers play it she went fret?

max (min rTA c)

"A max-min strategy"

How would Colon play if he west first?

min (max TAc)

"A mon-max strategy"

```
Zero-Sum Games:
```

- · Two players Rovena and Colin
- · Rowera chooses an action in [m] Colm chooses in [n]
- · Payoffs A & R R Rower a plays i

 Colm plays j

 Rower gets A:j
- Players can play randomly

 Rowera: $r = (r_1, ..., r_m)$ $\sum_{i=1}^{m} r_i \approx 0$ Colon: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{m} c_i \approx 0$ Rowera's expected payoff is $\sum_{i=1}^{m} r_i c_i A_{ij} = r^T A_i c_i$

min max 17Ac
c r

max min rTAc
r
c

Minimax Theorem: For every two-player sum game with payoffs

A & Rmxn

min max rTAc = max min rTAc

Application: Minimax Thm Proof

Minimar Theorem: For every two-player sum game with payoffs

A & Rmxn

min max rTAc = max min rTAc = value (A)

How can Rowera find an optimal strategy?

max (min rTAc) = max (min (rTA);)

 $\max_{r \in \Delta(m)} (m; r^T A c) = \max_{r \in \Delta(m)} (m; r^T A);$ $r \in \Delta(m) = \text{probability}$ $= \max_{r \in \Delta(m)} (m; r^T A);$ $= \max_{r \in \Delta(m)} (m; r^T A);$ $= \max_{r \in \Delta(m)} (m; r^T A);$

Write Provence's problem as an LP v, r max v s.t. $\sum_{i=1}^{m} r_i A_{ij} \approx \sigma$ for all $j \in [n]$ Note that these LPs are dual!

Note that these LPs are dual!

Solving Linear Programs: Simplex

Basic Feasible Solutions (Geometry)

Fact: There exists an optimal solution at a vertex of the feasible region.

Vertex = n Imearly independent constraints are tight

Simplex Algorithm:

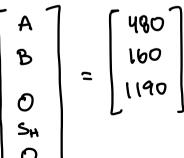
Iteratively walk around vertices of the feasible region until you get to an optimal point

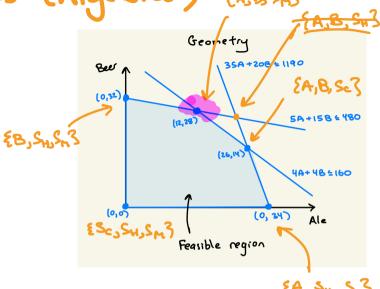
Convexity >> Local optima are global optima

Basic Feasible Solutions (Algebra)

Slack form LP

constraint matrix





unique solution if these columns are linearly magneto out

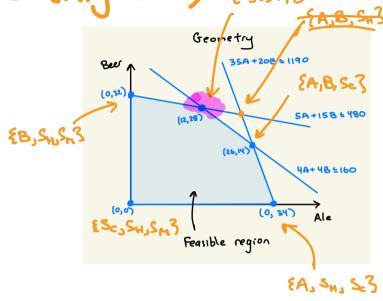
Basic Feasible Solutions (Algebra)

Slack form LP

max
$$13A + 23B$$

A,B,Sc,Sh,Sm
st. $5A + 15B + Sc = 480$
 $4A + 4B + Sh = 160$
 $35A + 20B + Sh = 1190$
 $A,B,Sc,Sh,Sh > 0$

constraint matrix



480 A BFS is defined by a set of n-m smetly positive vers T 160 1190

AT b is the BFS 1) A 7 13 mustible

3 A=1 b 70

The Simplex Algorithm (30,000' View)

Given an LP in standard form

max c^Tx x Ax=b x>0

Simplex algorithm

- Start with a BFS xo
corresponding to constraint set So - Repeat until optimality: How? - Find on adjacent BFS X; corresponding to contrast cTx; > cTx;-1

Thm: Only terminates at an optimal solution

The Simplex Al orithm (Pivot)

program

max 2 s.t. 13A + 23B 5A + 15B + Sc 4A + 4B 35A + 20B

matrix

basis & Sc. Sh, Sm3

blodraw

matrix

basis: & B, SH, SM3

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{1} & \frac{1}{15} & 0 & 0 \\ \frac{8}{3} & 0 & -\frac{4}{15} & 1 & 0 \\ \frac{8}{5} & 0 & -\frac{4}{13} & 0 & 1 \end{bmatrix} \begin{bmatrix} A7 \\ 6 \\ 54 \\ 54 \\ 54 \end{bmatrix} = \begin{bmatrix} 32 \\ 32 \\ 550 \end{bmatrix}$$

The Simplex Algorithm (30,000' View)

Given an LP in standard form

max c^Tx x Ax=b x>0

Simplex algorithm

- Start with a BFS xo
corresponding to constraint set So - Repeat until optimality: How? - Find on adjacent BFS X; corresponding to contrast cTx; > cTx;-1

Thm: Only terminates at an optimal solution

Simplex in Practice

Theory: Might need exponentially many proofs to termmate

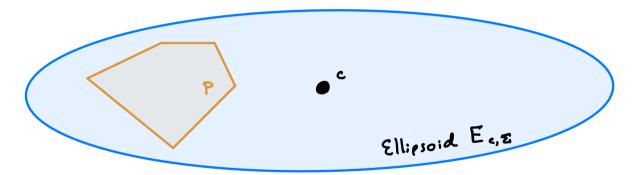
Practice: Can solve LPs with millions of variables/constraints (usually = 2(n+m) proofs)

Many Issues to Resolve:

- 1) What if the UP in infearible / unbounded?
- 2 How to choose a good pivot Ne?
- 3 How to avoid cycling?
- 4 HOW to maintain sparsity?
- (5) How to be numerically stable?
- 1) How to preprocess the LP to be smaller?

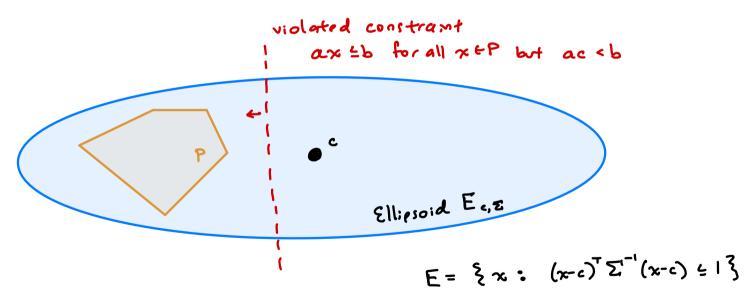
Solving linear programs in worst-case polynomial time

- @ Enough to find a fearible point. (Libry?)
- 1) Find an ellipsoid contaming P. (How?)



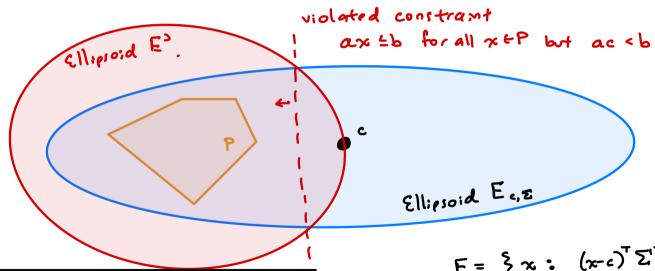
Solving linear programs in worst-case polynomial time

2 Either CEP or there is a violated constraint



Solving linear programs in worst-case polynomial time

3 Use the unlated constraint to find a smaller ellipsord containing P

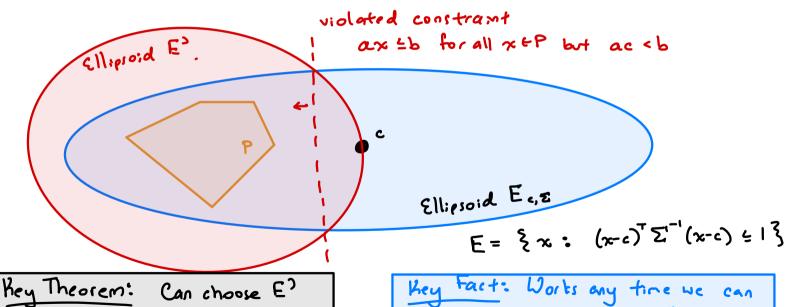


Key Theorem: Can choose
$$E^{\gamma}$$

so that $\frac{\text{vol}(E^{\gamma})}{\text{vol}(E)} \neq \left(1 - \frac{1}{2n+2}\right)$

Solving linear programs in worst-case polynomial time

3 Use the unlated constraint to find a smaller ellipsord containing P



so that $\frac{\text{vol}(E')}{\text{vol}(E)} \neq \left(1 - \frac{1}{2n+2}\right)$

find a "separation oracle" for P!

Linear Programming: Summary

Summary (of Network Flow Algorithms)

- Last Class: Can solve maximum flow in time $O(m \cdot v^*)$
 - Can be very slow when capacities are large
 - Cannot be improved if we allow arbitrary augmenting paths
- Today: Improving running time by choosing better paths
 - Widest Augmenting Path: $O(m \cdot \log v^*)$
 - Shortest Augmenting Path: $O(m^2n)$
- Still actively studied!
 - Can solve maximum flow in O(mn) using augmenting path* algos
 - Recent Breakthrough: Can solve maximum flow in time* $m^{1+o(1)}$
- Later On: Using maximum-flow as a building block for solving many more problems