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Flow Networks

* Directedgraph ¢ = (V,E)
* Two special nodes: source s and sink ¢
* Edge capacities c(e)
* Assume strongly connected (for simplicity)
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Flows

* An s-t flow is a function f(e) such that
* Foreverye € E,0 < f(e) < c(e) (capacity)
* Foreveryv EV\{s,t}, Yeintorf(€) = 2 outofr f(€) (conservation)

 The value of aflowis val(f) = Ze outofs S (€)
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Maximum Flow Problem

* Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

e value(f) =
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Cuts

* Ans-tcutis a partition (4,B) of Vwiths € Aandt € B

* The capacity of acut (A,B)is cap(4,B) = Y., qut of 4 €(€)
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Minimum Cut problem

* Given G =(V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

e cap({s,3,4,7},{2,5,6,t}) =
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Flows & Cuts: Closely Related

* Fact: If f is any s-t flow and (4, B) is any s-t cut, then the
net flow across (4, B) is equal to the amount leaving s

* The net flow across any s-t cut
is the same! Z fle) - Z f(e) = val(f)
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Cuts & Flows

* Let f be any s-t flow and (4, B) any s-t cut,
val(f) < cap(A, B)



Augmenting Paths

« Givenanetwork G = (V,E,s,t,{c(e)}) andaflow f, an
augmenting path P is asimple s — t path such that
f(e) <c(e)foreveryedgee € P

1 * Are these augmenting paths?
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Greedy Max Flow

e Start with f(e) = Oforalledgese € E
* Find an augmenting path P & increase flow

* Repeat until you get stuck
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Does Greedy Work"?

* Greedy gets stuck before finding a max flow
* How can we get from our solution to the max flow?

1 1
20 0 20 10
20 10\ 20 10
30 20 /@ 30 10

10 20 10 20
0 20 10 20

greedy optimal



Residual Graphs

* Originaledge: e = (u,v) € E.
* Flow f(e), capacity c(e)
* Residual capacity: c(e) - f(e)

* Residual edge
* Allows “undoing” flow
e ¢e=(u,v)andel = (v,u).
* cap(e®) =f(e)

* Residual graph Gf = (V, Ef)

* Original edges with positive residual capacity & residual edges
with positive capacity

* E; = {e: f(e) < cle)} U {eR: f(e) > 0}.



Ford-Fulkerson Algorithm

e Start with f(e) = Oforalledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck




Augmenting Paths in Residual Graphs

* Let Gy be aresidual graph
* Let P be an augmenting path in the residual graph
* Fact: f° = Augment(Gy, P) is a valid flow

Augment (G¢, P)
b < the minimum capacity of an edge in P
for e € P
if (e is an original edge) :
f(e) « f(e) + b
else:
f(ef) « £(ef) - b
return £



Ford-Fulkerson Algorithm

FordFulkerson(G,s,t, {c(e) })
for e € E: f(e) « O
G¢ is the residual graph

while (there is an s-t path P in G)
f <« Augment (G, P)
update G

return £

Augment (G;, P)
b < the minimum capacity of an edge in P
for e € P
if (e is an original edge): f(e) « f(e) + b
else: f(ef) « f£(ef) - b
return £



Ford-Fulkerson Demo




What do we want to prove?



Running Time of Ford-Fulkerson

 Forinteger capacities, < val(f*) augmentation steps

« Can perform each augmentation step in O(m) time
* find augmenting pathin O(m)
« augment the flow along path in 0(n)
« update the residual graph along the path in 0(n)

- Forinteger capacities, FF runsin O(m - val(f*)) time
* O(mn) time if all capacitiesarec, = 1
« 0(mnCy,y) time for any integer capacities < Cpyax
* Problematic when capacities are large—more on this later!



Optimality of Ford-Fulkerson

* Theorem: f is a maximum s-t flow if and only if there is
no augmenting s-t pathin G

* Strong MaxFlow-MinCut Duality: The value of the max
s-t flow equals the capacity of the min s-t cut

* We’ll prove that the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting path in G



Optimality of Ford-Fulkerson

* Theorem: the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting path in G¢



Optimality of Ford-Fulkerson

* (83— 1) If there is no augmenting path in G, then there is
acut (4, B) suchthatval(f) = cap(4, B)

e Let A be the set of nodes reachable from s in Gf
e Let B be all other nodes



Optimality of Ford-Fulkerson

* (83— 1) If there is no augmenting path in G, then there is
acut (4, B) suchthatval(f) = cap(4, B)

e Let A be the set of nodes reachable from s in Gf
e Let B be all other nodes
* Key observation: no edges in Gf go from Ato B

original network

* IfeisA - B, then f(e) = c(e)
e IfeisB — A,then f(e) =0




Ask the Audience

e |sthis a maximum flow?

* |sthere aninteger maximum flow?

* Does every graph with integer capacities have an
integer maximum flow?



Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow

* Running time O(m : val(f*)) in networks with integer capacities

* Strong MaxFlow-MinCut Duality: max flow = min cut

* The value of the max s-t flow equals the capacity of the min s-t cut

* If f*is a maximum s-t flow, then the set of nodes reachable from s
in G+ gives a minimum cut

« Given a max-flow, can find a min-cutin time O(n + m)

* Every graph with integer capacities has an integer
maximum flow

* Ford-Fulkerson will return an integer maximum flow
* Will be super important later
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