CS 7800: Advanced Algorithms

Class 7: Network Flow I

- Ford-Fulkerson
- Duality

Jonathan Ullman September 26, 2025

Flow Networks

- Directed graph G = (V, E)
- Two special nodes: source s and sink t
- Edge capacities c(e)
- Assume strongly connected (for simplicity)

Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity)
 - For every $v \in V \setminus \{s, t\}$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$

Maximum Flow Problem

- Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value
- value(f) =

Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut problem

- Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity
- $cap({s,3,4,7}, {2,5,6,t}) =$

Flows & Cuts: Closely Related

- Fact: If f is any s-t flow and (A,B) is any s-t cut, then the net flow across (A,B) is equal to the amount leaving s
- The net flow across any s-t cut is the same!

Cuts & Flows

• Let f be any s-t flow and (A, B) any s-t cut,

$$val(f) \le cap(A, B)$$

Augmenting Paths

• Given a network $G = (V, E, s, t, \{c(e)\})$ and a flow f, an augmenting path P is a simple $s \to t$ path such that f(e) < c(e) for every edge $e \in P$

- Are these augmenting paths?
 - s-1-t
 - s 2 t
 - s-1-2-t

Greedy Max Flow

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P & increase flow
- Repeat until you get stuck

Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?

Residual Graphs

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e)
 - Residual capacity: c(e) f(e)

Residual edge

- Allows "undoing" flow
- e = (u, v) and $e^R = (v, u)$.
- cap(e^R) = f(e)

- Residual graph $G_f = (V, E_f)$
 - Original edges with positive residual capacity & residual edges with positive capacity
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Augmenting Paths in Residual Graphs

- Let G_f be a residual graph
- Let P be an augmenting path in the residual graph
- Fact: $f' = Augment(G_f, P)$ is a valid flow

```
Augment(G_f, P)

b \leftarrow the minimum capacity of an edge in P

for e \in P

if (e is an original edge):

f(e) \leftarrow f(e) + b

else:

f(e^R) \leftarrow f(e^R) - b

return f
```

Ford-Fulkerson Algorithm

```
FordFulkerson(G,s,t,{c(e)})
  for e ∈ E: f(e) ← 0
  G<sub>f</sub> is the residual graph

while (there is an s-t path P in G<sub>f</sub>)
  f ← Augment(G<sub>f</sub>,P)
    update G<sub>f</sub>
return f
```

```
Augment(G_f, P)

b \leftarrow the minimum capacity of an edge in P

for e \in P

if (e is an original edge): f(e) \leftarrow f(e) + b

else: f(e^R) \leftarrow f(e^R) - b

return f
```

Ford-Fulkerson Demo

What do we want to prove?

Running Time of Ford-Fulkerson

• For integer capacities, $\leq val(f^*)$ augmentation steps

- Can perform each augmentation step in O(m) time
 - find augmenting path in O(m)
 - augment the flow along path in O(n)
 - update the residual graph along the path in O(n)
- ullet For integer capacities, FF runs in $Oig(m\cdot val(f^*)ig)$ time
 - O(mn) time if all capacities are $c_e=1$
 - $O(mnC_{\max})$ time for any integer capacities $\leq C_{\max}$
 - Problematic when capacities are large—more on this later!

- Theorem: f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f
- Strong MaxFlow-MinCut Duality: The value of the max s-t flow equals the capacity of the min s-t cut
- ullet We'll prove that the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

- Theorem: the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

- (3 \rightarrow 1) If there is no augmenting path in G_f , then there is a cut (A,B) such that val(f)=cap(A,B)
 - Let A be the set of nodes reachable from s in G_f
 - Let B be all other nodes

- (3 \rightarrow 1) If there is no augmenting path in G_f , then there is a cut (A,B) such that val(f)=cap(A,B)
 - Let A be the set of nodes reachable from s in G_f
 - Let B be all other nodes
 - **Key observation:** no edges in G_f go from A to B
- If e is $A \rightarrow B$, then f(e) = c(e)
- If e is $B \rightarrow A$, then f(e) = 0

Ask the Audience

• Is this a maximum flow?

- Is there an integer maximum flow?
- Does every graph with integer capacities have an integer maximum flow?

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
- Strong MaxFlow-MinCut Duality: max flow = min cut
 - The value of the max s-t flow equals the capacity of the min s-t cut
 - If f^* is a maximum s-t flow, then the set of nodes reachable from s in G_{f^*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n+m)
- Every graph with integer capacities has an integer maximum flow
 - Ford-Fulkerson will return an integer maximum flow
 - Will be super important later