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Flow Networks
• Directed graph 𝐺 = 𝑉, 𝐸
• Two special nodes: source 𝑠 and sink 𝑡
• Edge capacities 𝑐 𝑒
• Assume strongly connected (for simplicity)
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Flows
• An s-t flow is a function 𝑓 𝑒  such that

• For every 𝑒 ∈ 𝐸, 0 ≤ 𝑓 𝑒 ≤ 𝑐 𝑒                                 (capacity)
• For every 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡},  σ𝑒 in to 𝑣 𝑓 𝑒 = σ𝑒 out of 𝑣 𝑓 𝑒      (conservation)

• The value of a flow is 𝑣𝑎𝑙 𝑓 =  σ𝑒 out of 𝑠 𝑓 𝑒
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Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• value(f) = 
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Cuts
• An s-t cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• The capacity of a cut (A,B) is 𝑐𝑎𝑝 𝐴, 𝐵 = σ𝑒 out of 𝐴 𝑐 𝑒
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Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• cap({s,3,4,7}, {2,5,6,t}) = 
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Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• cap({s,3,4,7}, {2,5,6,t}) = 
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Flows & Cuts: Closely Related
• Fact: If 𝑓 is any s-t flow and (𝐴, 𝐵) is any s-t cut, then the 

net flow across (𝐴, 𝐵) is equal to the amount leaving s 
• The net flow across any s-t cut

is the same! ෍
𝑒 out of 𝐴

𝑓 𝑒 − ෍
𝑒 in to 𝐴

𝑓 𝑒 = 𝑣𝑎𝑙(𝑓)
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Cuts & Flows

• Let 𝑓 be any s-t flow and (𝐴, 𝐵) any s-t cut,

𝑣𝑎𝑙 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)



Augmenting Paths
• Given a network 𝐺 =  (𝑉, 𝐸, 𝑠, 𝑡, 𝑐 𝑒 ) and a flow 𝑓, an 

augmenting path 𝑃 is a simple 𝑠 → 𝑡 path such that
𝑓(𝑒) < 𝑐(𝑒) for every edge 𝑒 ∈ 𝑃

s

1

2

t

10

10

10 10

0 0

0

20

20

30

• Are these augmenting paths?
• s – 1 – t 
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• s – 1 – 2 - t



Greedy Max Flow
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 & increase flow
• Repeat until you get stuck
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Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?
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Residual Graphs
• Original edge:  𝑒 = 𝑢, 𝑣 ∈  𝐸.

• Flow 𝑓(𝑒), capacity 𝑐(𝑒)
• Residual capacity: c(e) – f(e)

• Residual edge
• Allows “undoing” flow
• 𝑒 = 𝑢, 𝑣  and 𝑒𝑅 = 𝑣, 𝑢 .
• cap(𝑒𝑅) = f(e)

• Residual graph 𝐺𝑓 = 𝑉, 𝐸𝑓
• Original edges with positive residual capacity & residual edges 

with positive capacity
• 𝐸𝑓 = 𝑒 ∶  𝑓 𝑒 <  𝑐 𝑒  ∪ 𝑒𝑅 ∶ 𝑓 𝑒 >  0 .



Ford-Fulkerson Algorithm
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 in the residual graph
• Repeat until you get stuck
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Augmenting Paths in Residual Graphs
• Let 𝐺𝑓  be a residual graph
• Let 𝑃 be an augmenting path in the residual graph
• Fact: 𝑓’ =  Augment(𝐺𝑓, 𝑃) is a valid flow

Augment(Gf, P)
    b  the minimum capacity of an edge in P
    for e  P
        if (e is an original edge): 
  f(e)  f(e) + b

else:      
  f(𝑒𝑅)  f( 𝑒𝑅) - b
    return f



Ford-Fulkerson Algorithm

Augment(Gf, P)
    b  the minimum capacity of an edge in P
    for e  P
        if (e is an original edge): f(e)  f(e) + b

else:  f(𝑒𝑅)  f( 𝑒𝑅) - b
    return f

FordFulkerson(G,s,t,{c(e)})
    for e  E: f(e)  0
    Gf is the residual graph
    
    while (there is an s-t path P in Gf)
        f  Augment(Gf,P)

update Gf
    
    return f



Ford-Fulkerson Demo
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What do we want to prove?



Running Time of Ford-Fulkerson
• For integer capacities, ≤ 𝑣𝑎𝑙 𝑓∗  augmentation steps

• Can perform each augmentation step in 𝑂 𝑚  time
• find augmenting path in 𝑂 𝑚
• augment the flow along path in 𝑂 𝑛
• update the residual graph along the path in 𝑂 𝑛

• For integer capacities, FF runs in 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗  time
• 𝑂 𝑚𝑛  time if all capacities are 𝑐𝑒 = 1
• 𝑂 𝑚𝑛𝐶max  time for any integer capacities ≤ 𝐶max
• Problematic when capacities are large—more on this later!



Optimality of Ford-Fulkerson
• Theorem: 𝑓 is a maximum s-t flow if and only if there is 

no augmenting s-t path in 𝐺𝑓

• Strong MaxFlow-MinCut Duality: The value of the max 
s-t flow equals the capacity of the min s-t cut 

• We’ll prove that the following are equivalent for all 𝑓
1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓



Optimality of Ford-Fulkerson
• Theorem: the following are equivalent for all 𝑓

1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓



Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is 

a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓

• Let 𝐵 be all other nodes



Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is 

a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓

• Let 𝐵 be all other nodes
• Key observation: no edges in 𝐺𝑓  go from 𝐴 to 𝐵

• If 𝑒 is 𝐴 → 𝐵, then 𝑓 𝑒 = 𝑐 𝑒
• If 𝑒 is 𝐵 → 𝐴, then 𝑓 𝑒 = 0
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Ask the Audience
• Is this a maximum flow?

• Is there an integer maximum flow?
• Does every graph with integer capacities have an 

integer maximum flow?
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Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow 

• Running time 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗  in networks with integer capacities

• Strong MaxFlow-MinCut Duality: max flow = min cut
• The value of the max s-t flow equals the capacity of the min s-t cut 
• If 𝑓∗ is a maximum s-t flow, then the set of nodes reachable from s 

in 𝐺𝑓∗  gives a minimum cut
• Given a max-flow, can find a min-cut in time 𝑂 𝑛 + 𝑚

• Every graph with integer capacities has an integer 
maximum flow

• Ford-Fulkerson will return an integer maximum flow
• Will be super important later


