
CS 7800: Advanced Algorithms

Class 7: Network Flow I
• Ford-Fulkerson
• Duality

Jonathan Ullman
September 26, 2025

Flow Networks
• Directed graph 𝐺 = 𝑉, 𝐸
• Two special nodes: source 𝑠 and sink 𝑡
• Edge capacities 𝑐 𝑒
• Assume strongly connected (for simplicity)

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows
• An s-t flow is a function 𝑓 𝑒 such that

• For every 𝑒 ∈ 𝐸, 0 ≤ 𝑓 𝑒 ≤ 𝑐 𝑒 (capacity)
• For every 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}, σ𝑒 in to 𝑣 𝑓 𝑒 = σ𝑒 out of 𝑣 𝑓 𝑒 (conservation)

• The value of a flow is 𝑣𝑎𝑙 𝑓 = σ𝑒 out of 𝑠 𝑓 𝑒

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• value(f) =

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Cuts
• An s-t cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• The capacity of a cut (A,B) is 𝑐𝑎𝑝 𝐴, 𝐵 = σ𝑒 out of 𝐴 𝑐 𝑒

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• cap({s,3,4,7}, {2,5,6,t}) =

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• cap({s,3,4,7}, {2,5,6,t}) =

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows & Cuts: Closely Related
• Fact: If 𝑓 is any s-t flow and (𝐴, 𝐵) is any s-t cut, then the

net flow across (𝐴, 𝐵) is equal to the amount leaving s
• The net flow across any s-t cut

is the same! ෍
𝑒 out of 𝐴

𝑓 𝑒 − ෍
𝑒 in to 𝐴

𝑓 𝑒 = 𝑣𝑎𝑙(𝑓)

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Cuts & Flows

• Let 𝑓 be any s-t flow and (𝐴, 𝐵) any s-t cut,

𝑣𝑎𝑙 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

Augmenting Paths
• Given a network 𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐 𝑒) and a flow 𝑓, an

augmenting path 𝑃 is a simple 𝑠 → 𝑡 path such that
𝑓(𝑒) < 𝑐(𝑒) for every edge 𝑒 ∈ 𝑃

s

1

2

t

10

10

10 10

0 0

0

20

20

30

• Are these augmenting paths?
• s – 1 – t
• s – 2 – t
• s – 1 – 2 - t

Greedy Max Flow
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 & increase flow
• Repeat until you get stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

Residual Graphs
• Original edge: 𝑒 = 𝑢, 𝑣 ∈ 𝐸.

• Flow 𝑓(𝑒), capacity 𝑐(𝑒)
• Residual capacity: c(e) – f(e)

• Residual edge
• Allows “undoing” flow
• 𝑒 = 𝑢, 𝑣 and 𝑒𝑅 = 𝑣, 𝑢 .
• cap(𝑒𝑅) = f(e)

• Residual graph 𝐺𝑓 = 𝑉, 𝐸𝑓
• Original edges with positive residual capacity & residual edges

with positive capacity
• 𝐸𝑓 = 𝑒 ∶ 𝑓 𝑒 < 𝑐 𝑒 ∪ 𝑒𝑅 ∶ 𝑓 𝑒 > 0 .

Ford-Fulkerson Algorithm
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 in the residual graph
• Repeat until you get stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

Augmenting Paths in Residual Graphs
• Let 𝐺𝑓 be a residual graph
• Let 𝑃 be an augmenting path in the residual graph
• Fact: 𝑓’ = Augment(𝐺𝑓, 𝑃) is a valid flow

Augment(Gf, P)
 b  the minimum capacity of an edge in P
 for e  P
 if (e is an original edge):
 f(e)  f(e) + b

else:
 f(𝑒𝑅)  f(𝑒𝑅) - b
 return f

Ford-Fulkerson Algorithm

Augment(Gf, P)
 b  the minimum capacity of an edge in P
 for e  P
 if (e is an original edge): f(e)  f(e) + b

else: f(𝑒𝑅)  f(𝑒𝑅) - b
 return f

FordFulkerson(G,s,t,{c(e)})
 for e  E: f(e)  0
 Gf is the residual graph

 while (there is an s-t path P in Gf)
 f  Augment(Gf,P)

update Gf

 return f

Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

𝐺:

𝐺𝑓:

What do we want to prove?

Running Time of Ford-Fulkerson
• For integer capacities, ≤ 𝑣𝑎𝑙 𝑓∗ augmentation steps

• Can perform each augmentation step in 𝑂 𝑚 time
• find augmenting path in 𝑂 𝑚
• augment the flow along path in 𝑂 𝑛
• update the residual graph along the path in 𝑂 𝑛

• For integer capacities, FF runs in 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗ time
• 𝑂 𝑚𝑛 time if all capacities are 𝑐𝑒 = 1
• 𝑂 𝑚𝑛𝐶max time for any integer capacities ≤ 𝐶max
• Problematic when capacities are large—more on this later!

Optimality of Ford-Fulkerson
• Theorem: 𝑓 is a maximum s-t flow if and only if there is

no augmenting s-t path in 𝐺𝑓

• Strong MaxFlow-MinCut Duality: The value of the max
s-t flow equals the capacity of the min s-t cut

• We’ll prove that the following are equivalent for all 𝑓
1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓

Optimality of Ford-Fulkerson
• Theorem: the following are equivalent for all 𝑓

1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓

Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is

a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓

• Let 𝐵 be all other nodes

Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is

a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓

• Let 𝐵 be all other nodes
• Key observation: no edges in 𝐺𝑓 go from 𝐴 to 𝐵

• If 𝑒 is 𝐴 → 𝐵, then 𝑓 𝑒 = 𝑐 𝑒
• If 𝑒 is 𝐵 → 𝐴, then 𝑓 𝑒 = 0

original network

s

t

A B

Ask the Audience
• Is this a maximum flow?

• Is there an integer maximum flow?
• Does every graph with integer capacities have an

integer maximum flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow

• Running time 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗ in networks with integer capacities

• Strong MaxFlow-MinCut Duality: max flow = min cut
• The value of the max s-t flow equals the capacity of the min s-t cut
• If 𝑓∗ is a maximum s-t flow, then the set of nodes reachable from s

in 𝐺𝑓∗ gives a minimum cut
• Given a max-flow, can find a min-cut in time 𝑂 𝑛 + 𝑚

• Every graph with integer capacities has an integer
maximum flow

• Ford-Fulkerson will return an integer maximum flow
• Will be super important later

