CS 7800: Advanced Algorithms

Class 6: Dynamic Programming III

- Knapsack
- Shortest Paths

Jonathan Ullman September 23, 2025

The Knapsack Problem

- Input: n items for your knapsack with value v_i and weight w_i and a capacity $T \in \mathbb{N}$
- Output: the most valuable subset of items that fits in the knapsack
 - subset $S \subseteq \{1, ..., n\}$
 - value $V_S = \sum_{i \in S} v_i$ as large as possible
 - weight $W_S = \sum_{i \in S} w_i$ at most T

Writing the Recurrence

Solving the Recurrence

Knapsack Problem Recap

- Can solve the knapsack problem in time O(nT)
 - First example of dynamic programming with multiple variables in the recurrence
 - First example of a pseudopolynomial-time algorithm—compare to naïve $O(2^n)$ time algorithm
 - Later on we may see an approximation algorithm that solves knapsack in time O(n) with small error

Shortest Paths

- Input: Directed, weighted graph $G = (V, E, \{w_e\})$, source node s
 - Possibly negative edge lengths $w_e \in \mathbb{R}$
 - No negative-length cycles!
- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on shortest $s \sim u$ path

Structure of Shortest Paths

• If $(u, v) \in E$, then $d(s, v) \le d(s, u) + w(u, v)$ for every node $s \in V$

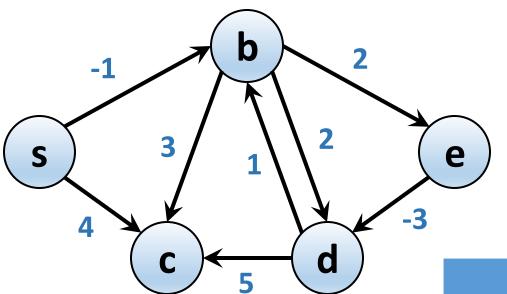
• If $(u, v) \in E$, and d(s, v) = d(s, u) + w(u, v) then there is a shortest $s \sim v$ -path ending with (u, v)

Writing the Recurrence

Solving the Recurrence

Writing the Recurrence: Attempt 2

Solving the Recurrence: Attempt 2



	0	1	2	3	4
S	0				
b	∞				
С	∞				
d	∞				
е	∞				

Shortest Paths Summary

- Input: Directed, weighted graph $G = (V, E, \{w_e\})$, and a source node s
- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on some shortest $s \sim u$ path
- Negative lengths: Bellman-Ford solves the single-source shortest paths problem in O(nm) worst-case time, or finds a negative cycle
 - Often much faster in practice with suitable appropriate optimizations