
CS 7800: Advanced Algorithms

Class 6: Dynamic Programming III
• Knapsack
• Shortest Paths

Jonathan Ullman
September 23, 2025

The Knapsack Problem

• Input: 𝑛 items for your knapsack with value 𝑣𝑖 and
weight 𝑤𝑖 and a capacity 𝑇 ∈ ℕ

• Output: the most valuable subset of items that fits
in the knapsack

• subset 𝑆 ⊆ 1,… , 𝑛
• value 𝑉𝑆 = σ𝑖∈𝑆 𝑣𝑖 as large as possible
• weight 𝑊𝑆 = σ𝑖∈𝑆 𝑤𝑖 at most 𝑇

Writing the Recurrence

Writing the Recurrence

Writing the Recurrence

Solving the Recurrence

Knapsack Problem Recap

• Can solve the knapsack problem in time 𝑂 𝑛𝑇
• First example of dynamic programming with

multiple variables in the recurrence
• First example of a pseudopolynomial-time

algorithm–compare to naïve 𝑂 2𝑛 time algorithm
• Later on we may see an approximation algorithm

that solves knapsack in time 𝑂 𝑛 with small error

Shortest Paths

• Input: Directed, weighted graph 𝐺 = 𝑉, 𝐸, 𝑤𝑒 ,
source node 𝑠

• Possibly negative edge lengths 𝑤𝑒 ∈ ℝ
• No negative-length cycles!

• Output: Two arrays 𝑑, 𝑝
• 𝑑[𝑢] is the length of the shortest 𝑠 ↝ 𝑢 path
• 𝑝[𝑢] is the final hop on shortest 𝑠 ↝ 𝑢 path

Structure of Shortest Paths

• If 𝑢, 𝑣 ∈ 𝐸, then 𝑑 𝑠, 𝑣 ≤ 𝑑 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 for
every node 𝑠 ∈ 𝑉

• If 𝑢, 𝑣 ∈ 𝐸, and 𝑑 𝑠, 𝑣 = 𝑑 𝑠, 𝑢 + 𝑤(𝑢, 𝑣) then
there is a shortest 𝑠 ↝ 𝑣-path ending with (𝑢, 𝑣)

Writing the Recurrence

Solving the Recurrence

Writing the Recurrence: Attempt 2

Solving the Recurrence: Attempt 2

s

b

e

c d

-1

4

1
2

-3

2

5

3

0 1 2 3 4

s 0

b ∞

c ∞

d ∞

e ∞

Shortest Paths Summary

• Input: Directed, weighted graph 𝐺 = 𝑉, 𝐸, 𝑤𝑒 ,
and a source node 𝑠

• Output: Two arrays 𝑑, 𝑝
• 𝑑[𝑢] is the length of the shortest 𝑠 ↝ 𝑢 path
• 𝑝[𝑢] is the final hop on some shortest 𝑠 ↝ 𝑢 path

• Negative lengths: Bellman-Ford solves the
single-source shortest paths problem in 𝑂 𝑛𝑚
worst-case time, or finds a negative cycle

• Often much faster in practice with suitable
appropriate optimizations

