CS 7800: Advanced Algorithms

Class 6: Dynamic Programming III

- Knapsack
- Shortest Paths

Jonathan Ullman September 23, 2025

Housekeeping

- HWI is retained
- HWZ due Forday (can use up to 2 lake days)
- OH tomorrow -> on Zoom 2-3pm > vill also add slots

- EXAM I TUESDAY OCT 7th
- HW3 out this Finday dre next Finday 10/3

The Knapsack Problem

- Input: n items for your knapsack with value v_i and weight w_i and a capacity $T \in \mathbb{N}$
- Output: the most valuable subset of items that fits in the knapsack
 - subset $S \subseteq \{1, ..., n\}$
 - value $V_S = \sum_{i \in S} v_i$ as large as possible
 - weight $W_S = \sum_{i \in S} w_i$ at most T

$$v_1=3$$
 $v_2=2$ $v_3=8$ $v_1=1$ $v_2=1$ $v_3=6$

all subsets of utsT

Writing the Recurrence

$$OPT(n) = max$$
 { value of best value of best solution ω/n } solution ω/n } $\sqrt{n} + OPT(n-1)$

$$v_1=3$$
 $v_2=2$ $v_3=8$
 $v_1=1$ $v_2=1$ $v_3=6$

$$v_1 = 3$$
 $v_2 = 2$ $v_3 = 8$
 $v_1 = 1$ $v_2 = 2$ $v_3 = 6$

all subsets of utst

Writing the Recurrence

subproblems

≈ nT subproblems

OPT
$$(n,T)$$
 = $\max \left\{ OPT(n-1,T), V_n + OPT(n-1,T-\omega_n) \right\}$
OPT $(0,T) = 0$ OPT $(i,0) = 0$

Writing the Recurrence

OPT(0,T)=0 OPT(2,0)=0

subproblems

≈ nT subproblems

OPT
$$(n,T)$$
 = $\begin{cases} OPT(n-1,T) & \text{if } \omega_n > T \\ ma \times \begin{cases} OPT(n-1,T) & \text{vn} + OPT(n-1,T-\omega_n) \end{cases} & \text{if } \omega_n > T \end{cases}$

Solving the Recurrence

Knapsack Problem Recap

- Can solve the knapsack problem in time O(nT)
 - First example of dynamic programming with multiple variables in the recurrence
 - First example of a pseudopolynomial-time algorithm-compare to naïve $O(2^n)$ time algorithm
 - Later on we may see an approximation algorithm that solves knapsack in time $\mathcal{O}(n)$ with small error

Input to a knapsack problem is 2n+1 number

Single source 1 Shortest Paths

- Input: Directed, weighted graph $G = (V, E, \{w_e\})$, source node s
 - Possibly negative edge lengths $w_e \in \mathbb{R}$
 - No negative-length cycles!
- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on shortest $s \sim u$ path

Structure of Shortest Paths

d(u,v)=length of the shortest uns path

• If $(u, v) \in E$, then $d(s, v) \le d(s, u) + w(u, v)$ for every node $s \in V$

• If $(u,v) \in E$, and d(s,v) = d(s,u) + w(u,v) then there is a shortest $s \sim v$ -path ending with (u,v)

Writing the Recurrence

Subproblens

OPT(v) = length of the shortest

path from s to v

veV

$$OPT(v) = Min \begin{cases} OPT(u) + \omega(u,v) \end{cases}$$

$$u \text{ s.t. } (u,v) \in E$$

$$OPT(s) = 0$$

Solving the Recurrence

Writing the Recurrence: Attempt 2

OPT
$$(v, i) = length of the shortest path from s to volume at most i edges

veV $i = 0, 1, ..., n-1$
 n^2 subproblems$$

OPT(
$$v_s$$
i) = min
 $u:(u,v)\in E$
 $u:(u,v)\in E$

$$OPT(s,i) = 0$$
 $OPT(v,0) = \infty$ for $v \neq s$

Solving the Recurrence: Attempt 2

 ∞

e

Shortest Paths Summary

- Input: Directed, weighted graph $G = (V, E, \{w_e\})$, and a source node s
- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on some shortest $s \sim u$ path
- Negative lengths: Bellman-Ford solves the single-source shortest paths problem in O(nm) worst-case time, or finds a negative cycle
 - Often much faster in practice with suitable appropriate optimizations