CS 7800: Advanced Algorithms

Class 5: Dynamic Programming
* Finish Weighted Interval Scheduling
* Segmented Least Squares

Jonathan Ullman
September 19, 2025

Weighted Interval Scheduling

* Input: n intervals (s;, f;) each with value v,
 Assume intervalsare sortedso f; < f, < < f,
* Output: a compatible schedule S maximizing
the total value of all intervals
* Aschedule is asubset of intervals § € {1, ...,n}
* Aschedule S is compatibleifnoi,j € S overlap
* The total value of S is },;cc V;

Index

U2=4|

[«)) 9,1 W (98] \S] —

=
(=)} wu 1=N w \S] — %
_ b

Finding the Recurrence

Finding the Optimal Solution

But we want a schedule, not a value!

Index

U1=2|

U2=4l

Weighted Interval Scheduling Recap

* There is an O(nlogn) algorithm for the weighted
interval scheduling problem

* Generalizes the greedy alg for the unweighted version
* Our firstexample of dynamic programming

* Dynamic Programming Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) design an algorithm to efficiently solve the recurrence
(4) recover the actual solution at the end

(Ordinary) Least Squares

* Input: n data points P = {(x1, 1), ..., (X5, V) }
* Output: the line L (i.e. y = ax + b) that fits best
* best = minimizes error(L, P) = Y;(y; — ax; — b)*

Q,O”7 q = nyx;y; — (Ex)Cyy)
O/"O’ an? — (3x;)?
Jeole
x’Q/O h = Zyl _ azxi

n

* Thereis an O(n) time algorithm for finding the
line of best fit

Segmented Least Squares

* Input: n data points P = {(x1, 1), ..., (X5, V) }
e What if the data does not look like a line?

* Some data can be
6 000° described better by more
than one line segment
o * But, using = "/, segments
defeats the purpose!

Segmented Least Squares

* Input: n data points P = {(x¢,v1), ..., (x5, V) },
cost parameter C > 0

* Assume x; < x, < - < Xp
* Output: a partition of P into contiguous (disjoint)
segments 54,955, ..., 5,,,, lines Ly, Lo, ..., L,
minimizing total “cost”

O o

cost(S{, ..., 5, L1, ..., L)
=mC + Y./~ error(L;, S;)

O
O
@]
@]
@)
O

o ©
O
o ©
o ©

Segmented Least Squares

* First observation: for every segment Sj, Lj must
be the (single) line of best fit for §;

* Let L; ; be the optimal line for {p;, ..., p;}
 letg ;= error(L?j,{Pi» ---;Pj})

60 0°°° Can compute ¢; ; for
o alli,j in 0(n3) time
N straightforwardly,

...or 0(n?) time with

more cleverness

Let L"{’j be the optimalline for {p;, ..., pj}]

Writing the Recurrence [Letei,j=err0r(L"lf,j,{pi,...,pj})

SLS: Take |

// All inputs are global vars
FindOPT (n) :
if (n = 0): return O
elseif (n = 1,2): return C
else:
return mijn(g;,+C + FindOPT(i — 1))

1<isn

Runtime:

SLS: Take Ill (“Bottom-Up”)

// All inputs are global vars
FindOPT (n) :

M[O] «< 0, M[1l] «C, M[2] «<C
for (3 = 3,..,n):
M[j] < min(g;+C+M[i-1])
<i<j
return M[n]

Runtime:

Let L"{’j be the optimalline for {p;, ..., p;}
Lete; j = error(L’;J,{pi, ...,pj})

Finding Segments

Finding Segments

// All inputs are global vars
// M[0:n] contains solutions to subproblems
FindSol (M, n) :
if (n = 0): return 0
elseif (n = 1): return {1}
elseif (n = 2): return {1,2}
else:
Let x« argmin,.;<, (&, +C+ M[i—1]):
return {x,..,n} + FindSol (M, x-1)

Runtime:

Weighted Interval Scheduling Recap

* There is an 0(n?) time algorithm for the weighted
interval scheduling problem

* Second example of dynamic programming
* Canonical example of partitioning a line into segments

* Dynamic Programming Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) design an algorithm to efficiently solve the recurrence
(4) recover the actual solution at the end

	Slide 1: CS 7800: Advanced Algorithms
	Slide 2: Weighted Interval Scheduling
	Slide 3: Finding the Recurrence
	Slide 4: Finding the Optimal Solution
	Slide 5: Weighted Interval Scheduling Recap
	Slide 6: (Ordinary) Least Squares
	Slide 7: Segmented Least Squares
	Slide 8: Segmented Least Squares
	Slide 9: Segmented Least Squares
	Slide 10: Writing the Recurrence
	Slide 11: SLS: Take I
	Slide 12: SLS: Take III (“Bottom-Up”)
	Slide 13: Finding Segments
	Slide 14: Finding Segments
	Slide 15: Weighted Interval Scheduling Recap

