CS 7800: Advanced Algorithms

Class 5: Dynamic Programming II

- Finish Weighted Interval Scheduling
- Segmented Least Squares

Jonathan Ullman September 19, 2025

Weighted Interval Scheduling

- Input: n intervals (s_i, f_i) each with value v_i
 - Assume intervals are sorted so $f_1 < f_2 < \cdots < f_n$
- Output: a compatible schedule S maximizing the total value of all intervals
 - A **schedule** is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is **compatible** if no $i, j \in S$ overlap
 - The **total value** of S is $\sum_{i \in S} v_i$

```
Index

v_1 = 2

v_2 = 4

v_3 = 4

v_4 = 7

v_5 = 2

v_6 = 1
```

Finding the Recurrence

```
Index

v_1 = 2

v_2 = 4

v_3 = 4

v_4 = 7

v_5 = 2

v_6 = 1
```

Finding the Optimal Solution

But we want a schedule, not a value!

Index $v_1 = 2$ $v_2 = 4$ $v_3 = 4$ $v_4 = 7$ $v_5 = 2$ $v_6 = 1$

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]
0	2	4	6	7	8	8

Weighted Interval Scheduling Recap

- There is an $O(n \log n)$ algorithm for the weighted interval scheduling problem
 - Generalizes the greedy alg for the unweighted version
 - Our first example of dynamic programming

Dynamic Programming Recipe:

- (1) identify a set of **subproblems**
- (2) relate the subproblems via a recurrence
- (3) design an algorithm to **efficiently solve** the recurrence
- (4) recover the actual solution at the end

(Ordinary) Least Squares

- Input: n data points $P = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Output: the line L (i.e. y = ax + b) that fits **best**
 - **best** = minimizes $error(L, P) = \sum_{i} (y_i ax_i b)^2$

$$a = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{n\sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{\sum y_i - a\sum x_i}{n}$$

• There is an O(n) time algorithm for finding the line of best fit

Segmented Least Squares

- Input: n data points $P = \{(x_1, y_1), ..., (x_n, y_n)\}$
- What if the data does not look like a line?

- Some data can be described better by more than one line segment
- But, using $\geq n/2$ segments defeats the purpose!

Segmented Least Squares

- Input: n data points $P = \{(x_1, y_1), ..., (x_n, y_n)\},$ cost parameter C > 0
 - Assume $x_1 < x_2 < \dots < x_n$
- Output: a partition of P into contiguous (disjoint) segments S_1, S_2, \dots, S_m , lines L_1, L_2, \dots, L_m , minimizing total "cost"

Segmented Least Squares

- First observation: for every segment S_j , L_j must be the (single) line of best fit for S_j
 - Let $L_{i,j}^*$ be the optimal line for $\{p_i, \dots, p_j\}$
 - Let $\varepsilon_{i,j} = error(L_{i,j}^*, \{p_i, \dots, p_j\})$

Can compute $\varepsilon_{i,j}$ for all i,j in $O(n^3)$ time straightforwardly,

...or $O(n^2)$ time with more cleverness

Writing the Recurrence

Let $L_{i,j}^*$ be the optimal line for $\{p_i,...,p_j\}$ Let $\varepsilon_{i,j}=errorig(L_{i,j}^*,ig\{p_i,...,p_jig\}ig)$

SLS: Take I

Runtime:

SLS: Take III ("Bottom-Up")

Runtime:

Finding Segments

Let $L_{i,j}^*$ be the optimal line for $\{p_i,\dots,p_j\}$ Let $\varepsilon_{i,j}=errorig(L_{i,j}^*,ig\{p_i,\dots,p_j\}ig)$

Finding Segments

```
// All inputs are global vars
// M[0:n] contains solutions to subproblems
FindSol(M,n):
    if (n = 0): return \emptyset
    elseif (n = 1): return {1}
    elseif (n = 2): return {1,2}
    else:
        Let \mathbf{x} \leftarrow \operatorname{argmin}_{1 \leq i \leq n} \left( \varepsilon_{i,n} + C + M[i-1] \right):
    return {\mathbf{x}, \dots, \mathbf{n}} + FindSol(M,\mathbf{x}-1)
```

Runtime:

Weighted Interval Scheduling Recap

- There is an $O(n^2)$ time algorithm for the weighted interval scheduling problem
 - Second example of dynamic programming
 - Canonical example of partitioning a line into segments

Dynamic Programming Recipe:

- (1) identify a set of **subproblems**
- (2) relate the subproblems via a recurrence
- (3) design an algorithm to **efficiently solve** the recurrence
- (4) recover the actual solution at the end