
CS 7800: Advanced Algorithms

Class 5: Dynamic Programming II
• Finish Weighted Interval Scheduling
• Segmented Least Squares

Jonathan Ullman
September 19, 2025

Weighted Interval Scheduling

• Input: 𝑛 intervals 𝑠𝑖, 𝑓𝑖 each with value 𝑣𝑖
• Assume intervals are sorted so 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Output: a compatible schedule 𝑆 maximizing
the total value of all intervals

• A schedule is a subset of intervals 𝑆 ⊆ {1,… , 𝑛}
• A schedule 𝑆 is compatible if no 𝑖, 𝑗 ∈ 𝑆 overlap
• The total value of 𝑆 is σ𝑖∈𝑆 𝑣𝑖

Finding the Recurrence

Finding the Optimal Solution

But we want a schedule, not a value!

M[0] M[1] M[2] M[3] M[4] M[5] M[6]

0 2 4 6 7 8 8

Weighted Interval Scheduling Recap

• There is an 𝑂 𝑛 log 𝑛 algorithm for the weighted
interval scheduling problem

• Generalizes the greedy alg for the unweighted version
• Our first example of dynamic programming

• Dynamic Programming Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) design an algorithm to efficiently solve the recurrence
(4) recover the actual solution at the end

(Ordinary) Least Squares

• There is an 𝑂(𝑛) time algorithm for finding the
line of best fit

𝑎 =
𝑛σ𝑥𝑖𝑦𝑖 − σ𝑥𝑖 σ𝑦𝑖

𝑛σ𝑥𝑖
2 − σ𝑥𝑖

2

𝑏 =
σ𝑦𝑖 − 𝑎σ𝑥𝑖

𝑛

• Input: 𝑛 data points 𝑃 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛
• Output: the line 𝐿 (i.e. 𝑦 = 𝑎𝑥 + 𝑏) that fits best

• best = minimizes 𝑒𝑟𝑟𝑜𝑟 𝐿, 𝑃 = σ𝑖 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 2

Segmented Least Squares

• Input: 𝑛 data points 𝑃 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

• What if the data does not look like a line?

• Some data can be
described better by more
than one line segment

• But, using ≥ Τ𝑛
2 segments

defeats the purpose!

Segmented Least Squares

• Input: 𝑛 data points 𝑃 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ,
cost parameter 𝐶 > 0

• Assume 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛

• Output: a partition of 𝑃 into contiguous (disjoint)
segments 𝑆1, 𝑆2, … , 𝑆𝑚, lines 𝐿1, 𝐿2, … , 𝐿𝑚,
minimizing total “cost”

cost(𝑆1, … , 𝑆𝑚, 𝐿1, … , 𝐿𝑚)
= 𝑚𝐶 + σ𝑖=1

𝑚 𝑒𝑟𝑟𝑜𝑟 𝐿𝑖, 𝑆𝑖

Segmented Least Squares

• First observation: for every segment 𝑆𝑗, 𝐿𝑗 must
be the (single) line of best fit for 𝑆𝑗

• Let 𝐿𝑖,𝑗
∗ be the optimal line for {𝑝𝑖, … , 𝑝𝑗}

• Let 𝜀𝑖,𝑗 = 𝑒𝑟𝑟𝑜𝑟 𝐿𝑖,𝑗
∗ , 𝑝𝑖, … , 𝑝𝑗

Can compute 𝜀𝑖,𝑗 for
all 𝑖, 𝑗 in 𝑂 𝑛3 time
straightforwardly,

…or 𝑂 𝑛2 time with
more cleverness

Writing the Recurrence
Let 𝐿𝑖,𝑗

∗ be the optimal line for {𝑝𝑖, … , 𝑝𝑗}

Let 𝜀𝑖,𝑗 = 𝑒𝑟𝑟𝑜𝑟 𝐿𝑖,𝑗
∗ , 𝑝𝑖, … , 𝑝𝑗

Writing the Recurrence
Let 𝐿𝑖,𝑗

∗ be the optimal line for {𝑝𝑖, … , 𝑝𝑗}

Let 𝜀𝑖,𝑗 = 𝑒𝑟𝑟𝑜𝑟 𝐿𝑖,𝑗
∗ , 𝑝𝑖, … , 𝑝𝑗

Writing the Recurrence
Let 𝐿𝑖,𝑗

∗ be the optimal line for {𝑝𝑖, … , 𝑝𝑗}

Let 𝜀𝑖,𝑗 = 𝑒𝑟𝑟𝑜𝑟 𝐿𝑖,𝑗
∗ , 𝑝𝑖, … , 𝑝𝑗

SLS: Take I

// All inputs are global vars
FindOPT(n):
 if (n = 0): return 0
 elseif (n = 1,2): return C
 else:
 return 𝐦𝐢𝐧

𝟏≤𝒊≤𝒏
(𝜺𝒊,𝒏+𝑪 + 𝐅𝐢𝐧𝐝𝐎𝐏𝐓 𝒊 − 𝟏)

Runtime:

SLS: Take III (“Bottom-Up”)

// All inputs are global vars
FindOPT(n):
 M[0] ← 0, M[1] ← C, M[2] ← C
 for (j = 3,…,n):
 M[j] ← 𝐦𝐢𝐧

𝟏≤𝒊≤𝒋
(𝜺𝒊,𝒋 + 𝑪 + 𝑴[𝒊 − 𝟏])

 return M[n]

Runtime:

Finding Segments
Let 𝐿𝑖,𝑗

∗ be the optimal line for {𝑝𝑖, … , 𝑝𝑗}

Let 𝜀𝑖,𝑗 = 𝑒𝑟𝑟𝑜𝑟 𝐿𝑖,𝑗
∗ , 𝑝𝑖, … , 𝑝𝑗

Finding Segments

// All inputs are global vars
// M[0:n] contains solutions to subproblems
FindSol(M,n):
 if (n = 0): return ∅
 elseif (n = 1): return {1}
 elseif (n = 2): return {1,2}
 else:
 Let x ← 𝐚𝐫𝐠𝐦𝐢𝒏𝟏≤𝒊≤𝒏 (𝜺𝒊,𝒏 + 𝑪 + 𝑴 𝒊 − 𝟏):
 return {x,…,n} + FindSol(M,x-1)

Runtime:

Weighted Interval Scheduling Recap

• There is an 𝑂 𝑛2 time algorithm for the weighted
interval scheduling problem

• Second example of dynamic programming
• Canonical example of partitioning a line into segments

• Dynamic Programming Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) design an algorithm to efficiently solve the recurrence
(4) recover the actual solution at the end

