CS 7800: Advanced Algorithms

Class 5: Dynamic Programming II

- Finish Weighted Interval Scheduling
- Segmented Least Squares

Jonathan Ullman September 19, 2025

Weighted Interval Scheduling

- Input: n intervals (s_i, f_i) each with value v_i
 - Assume intervals are sorted so $f_1 < f_2 < \cdots < f_n$
- Output: a compatible schedule S maximizing the total value of all intervals
 - A **schedule** is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is **compatible** if no $i, j \in S$ overlap
 - The **total value** of S is $\sum_{i \in S} v_i$

Finding the Recurrence

only the value of the optimal solution

OPT(i) = (value) of the optimal schedule among intervals 12, ..., i

Reconence:

Index

best solution

not using i

best solution

Finding the Optimal Solution

all schedules

But we want a schedule, not a value!

Value of optimal 6

Finding the Solution

Assume that we already filled M[i]=OPT(i)

```
Find Sched (n):
if n=0 return $

elif n=1 return $13

clse:

if M[n] = M[n-1] then return FindSched (n-1)

if M[n] = v_n + M[p_n] then return $n3 + FindSched (Pn)
```

Runtine: Ola)

Weighted Interval Scheduling Recap

- There is an $O(n \log n)$ algorithm for the weighted interval scheduling problem
 - Generalizes the greedy alg for the unweighted version
 - Our first example of dynamic programming

Dynamic Programming Recipe:

- (1) identify a set of **subproblems**(2) relate the subproblems via a **recurrence**
 - (3) design an algorithm to efficiently solve the recurrence
 - (4) recover the actual solution at the end

(Ordinary) Least Squares

- Input: n data points $P = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Output: the line L (i.e. y = ax + b) that fits **best**
 - **best** = minimizes $error(\underline{L}, \underline{P}) = \sum_{i} (y_i ax_i b)^2$

$$a = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{n\sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{\sum y_i - a \sum x_i}{n}$$

• There is an O(n) time algorithm for finding the line of best fit

Segmented Least Squares

- Input: n data points $P = \{(x_1, y_1), ..., (x_n, y_n)\}$
- What if the data does not look like a line?

- Some data can be described better by more than one line segment
- But, using $\geq n/2$ segments defeats the purpose!

Segmented Least Squares

- Input: n data points $P = \{(x_1, y_1), ..., (x_n, y_n)\},$ cost parameter C > 0
 - Assume $x_1 < x_2 < \dots < x_n$
- Output: a partition of P into contiguous (disjoint) segments S_1, S_2, \ldots, S_m , lines L_1, L_2, \ldots, L_m , minimizing total "cost"

$$\mathbf{cost}(S_1, ..., S_m, L_1, ..., L_m)$$

$$= mC + \sum_{i=1}^m error(L_i, S_i)$$

Segmented Least Squares

- First observation: for every segment S_j , L_j must be the (single) line of best fit for S_j
 - Let $L_{i,j}^*$ be the optimal line for $\{p_i, \dots, p_j\}$
 - Let $\varepsilon_{i,j} = error(L_{i,j}^*, \{p_i, \dots, p_j\})$

Can compute $\varepsilon_{i,j}$ for all i,j in $O(n^3)$ time straightforwardly,

...or $O(n^2)$ time with more cleverness

Writing the Recurrence

Let $L_{i,j}^*$ be the optimal line for $\{p_i, ..., p_j\}$ Let $\varepsilon_{i,j} = error(L_{i,j}^*, \{p_i, ..., p_j\})$

they Idea: Split possible solutions based on what the last interval is.

Writing the Recurrence

Let $L_{i,j}^*$ be the optimal line for $\{p_i, ..., p_j\}$ Let $\varepsilon_{i,j} = error(L_{i,j}^*, \{p_i, ..., p_j\})$

all partitions of Eli..., n3 into segments Su..., Sm

Type i solutions: Final interval is {i,..., n}

Best type: solution has ost

+ cost of optimal SLS for 1, ..., i-1

Writing the Recurrence

Let $L_{i,j}^*$ be the optimal line for $\{p_i, ..., p_j\}$ Let $\varepsilon_{i,j} = error(L_{i,j}^*, \{p_i, ..., p_j\})$

all partitions of Eli..., n3
into segments Su..., Sm

Subproblens:

OPT(i) = value of the optimal SLS solution for points {15..., i}

Recurrence:
$$OPT(n) = \begin{cases} min \\ 1 \le i \le n \end{cases}$$
 $C + \epsilon_{i,n} + OPT(i-1)$ $OPT(0) = 0$ $optimal value for $optimal value for optimal value for optimal value for $optimal value for optimal value for optimal value for $optimal value for optimal value for opti$$$$$$$$$$$$$$$

SLS: Take I

```
// All inputs are global vars
FindOPT(n):
  if (n = 0): return 0
  elseif (n = 1,2): return C
  else:
     \underset{1 \leq i \leq n}{\min} (\varepsilon_{i,n} + C + \text{FindOPT}(i-1))
```

Runtime:

SLS: Take III ("Bottom-Up")

```
// All inputs are global vars  \begin{split} &\text{FindOPT(n):} \\ &M[0] \leftarrow 0 \text{, } M[1] \leftarrow C \text{, } M[2] \leftarrow C \\ &\text{for } (j = 3, ..., n): \\ &M[j] \leftarrow \min_{1 \leq i \leq j} (\varepsilon_{i,j} + C + M[i-1]) \\ &\text{return } M[n] \end{split}
```


$$\sum_{j=3}^{n} O(j) = O(n^2)$$

Finding Segments

Let $L_{i,j}^*$ be the optimal line for $\{p_i,\dots,p_j\}$ Let $\varepsilon_{i,j}=errorig(L_{i,j}^*,ig\{p_i,\dots,p_j\}ig)$

Recurrence:
$$OPT(n) = min$$
 $\begin{cases} C + \epsilon_{i,n} + OPT(i-1) \end{cases}$ $OPT(0) = 0$ $optimal value for $optimal value for optimal value for optimal value for $optimal value for optimal value for optimal value for $optimal value for optimal val$$$$$$$$$$$$$$$$$$$$

• There is some i such that OPT(n) = C+ & i,n + OPT(i-1)

- "Optimal solution for points {1,..., n} is the optimal solution
for points {1,...,i-1} combined with final segment {i,...,n}"

Finding Segments

```
// All inputs are global vars
// M[0:n] contains solutions to subproblems
FindSol(M,n):
  if (n = 0): return \emptyset
  elseif (n = 1): return {1}
    Let \leftarrow \operatorname{argmin}_{1 \leq i \leq n} (\varepsilon_{i,n} + C + M[i-1]):

return \{z_i', ..., n\} + \operatorname{FindSol}(M, z_{i-1})
  elseif (n = 2): return \{1,2\}
  else:
```

Runtime: $O(N^2)$

Weighted Interval Scheduling Recap

- There is an $O(n^2)$ time algorithm for the THE VOLSE LEGISLET HE WAS THE DO
 - Second example of dynamic programming
 - Canonical example of partitioning a line into segments

Dynamic Programming Recipe:

- (1) identify a set of **subproblems**(2) relate the subproblems via a **recurrence**
 - (3) design an algorithm to **efficiently solve** the recurrence
 - (4) recover the actual solution at the end