### CS 7800: Advanced Algorithms

#### Class 3: Greedy Algorithms II

- Finish Minimum Lateness Scheduling
- Minimum Spanning Tree

Jonathan Ullman September 9, 2025

### Minimum Lateness Scheduling

- ullet Input: n jobs with length  $t_i$  and deadline  $d_i$ 
  - Simplifying assumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs
  - Job i starts at  $s_i$  finishes  $f_i$ , no jobs overlap
  - The lateness of job i is  $\max\{f_i d_i, 0\}$
  - The lateness of a schedule is  $\max_i \{ \max\{f_i d_i, 0\} \}$



# Possible Greedy Rules

#### Greedy Algorithm: Earliest Deadline First

- Sort jobs so that  $d_1 \leq d_2 \leq \cdots \leq d_n$
- For i = 1, ..., n:
  - Schedule job i right after job i 1 finishes

- Putting the steps together (a thought experiment)
  - (1) The greedy schedule G has no inversions
  - (2) While O is **not** equal to G
    - (2a) O has at least one inversion
    - (2b) *O* has a pair of consecutive jobs *i*, *j* that are inverted
    - (2c) Swap the order of i, j to fix the inversion
  - (3) Now O is equal to G but its lateness didn't increase, so O started at least as late as G

#### Minimum-Lateness Scheduling Recap

- There is an  $O(n \log n)$  greedy algorithm for the minimum-lateness scheduling problem
  - Sort by earliest deadline and schedule jobs consecutively with no gaps
  - Analyze via an exchange argument



#### **Network Design**

- Build a cheap, connected graph
- We are given
  - A set of nodes  $V = \{v_1, ..., v_n\}$  and edges  $E \subseteq V \times V$
  - a weight function on the edges  $w_e$
- Want to build a network to connect the nodes
  - Every  $v_i$ ,  $v_j$  must be connected
  - Must be as cheap as possible
- Many variants of network design

#### Minimum Spanning Trees (MST)

- Input: a weighted graph  $G = (V, E, \{w_e\})$ 
  - Undirected, connected, weights may be negative
  - All edge weights are distinct
- Output: a spanning tree T of minimum cost
  - A spanning tree of G is a subset of  $T \subseteq E$  of the edges such that (V, T) forms a tree
  - Cost of a spanning tree T is the sum of the edge weights

## Minimum Spanning Trees (MST)

#### Cuts and Cycles

Cut: a subset of nodes S Cutset: edges w/ 1 endpoint in cut



Cut S = 
$$\{4, 5, 8\}$$
  
Cutset of S =  $(5,6)$ ,  $(5,7)$ ,  $(3,4)$ ,  $(3,5)$ ,  $(7,8)$ 

**Cycle:** a set of edges  $(v_1, v_2), (v_2, v_3), ..., (v_k, v_1)$ 



Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

# **Cut Property**

# The "Only" MST Algorithm

# Borůvka's Algorithm

# Borůvka's Algorithm

# Borůvka's Algorithm

## Kruskal's Algorithm

#### **MST** Recap

- There is an  $O(m \log n)$  greedy algorithm for finding a minimum spanning tree
  - There are actually several such algorithms
  - Bespoke analysis using structural properties of MSTs