CS 7800: Advanced Algorithms

Class 3: Greedy Algorithms |l
* Finish Minimum Lateness Scheduling
* Minimum Spanning Tree

Jonathan Ullman
September 9, 2025

Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
 Simplifyingassumption: all deadlines are distinct
* OQutput: a minimum-lateness schedule for the jobs

* Job i starts at s; finishes f;, no jobs overlap

* The lateness of job i is max{f; — d;, 0}

* The lateness of a schedule is max{max{f; — d;, 0}}
l

Length 1 Deadline 2
w1

Length 2 Deadline 4
Job 2 | | |

Length 3 Deadline 6
Job 3 | | |

Solution: ‘ | |
Job 1: Job 2: Job 3:

Possible Greedy Rules

Greedy Algorithm: Earliest Deadline First

* Sortjobs sothatd, <d, <---<d,

e Fori=1,...,n:
* Schedule job i right afterjob i — 1finishes

Exchange Argument

Exchange Argument

Exchange Argument

Exchange Argument

Exchange Argument

Exchange Argument

* Putting the steps together (a thought experiment)
* (1) The greedy schedule ¢ has no inversions
* (2) While O is not equalto G
* (2a) O has at least one inversion

* (2b) O has a pair of consecutive jobs i, j that
are inverted

* (2c) Swap the order of i, j to fix the inversion

* (3) Now O is equal to G but its lateness didn’t
increase, so O started at least as late as G

Minimum-Lateness Scheduling Recap

* There is an O(nlogn) greedy algorithm for the
minimum-lateness scheduling problem

e Sort by earliest deadline and schedule jobs
consecutively with no gaps

* Analyze via an exchange argument

Job 1: Job 2: Job 3:
done at done at done at
time 1 time 1+2=3 time 1+2+3=6

Network Design

* Build a cheap, connected graph

* We are given
 Asetof nodesV ={v,,..,v,}andedgesE SV XV
* aweight function on the edges w,

e Want to build a network to connect the nodes

* Every v;, v; must be connected
* Must be as cheap as possible

* Many variants of network design

Minimum Spanning Trees (MST)

* Input: a weighted graph ¢ = (V, E,{w,})
* Undirected, connected, weights may be negative
* All edge weights are distinct

* Output: a spanning tree T of minimum cost

* Aspanning tree of G is asubsetof T € E of the edges
such that (V,T) forms a tree

* CostofaspanningtreeT is the sum of the edge weights

Minimum Spanning Trees (MST)

Cuts and Cycles

Cut: a subset of nodes S Cutset: edges w/ 1 endpoint in cut

CutS = {4,5, 8}
Cutset of S = (5,6), (5,7), (3,4), (3,5), (7,8)

Cut Property

The “Only” MST Algorithm

Boruvka’s Algorithm

Boruvka’s Algorithm

Boruvka’s Algorithm

Kruskal’s Algorithm

MST Recap

* There is an O(mlogn) greedy algorithm for
finding a minimum spanning tree
* There are actually several such algorithms
* Bespoke analysis using structural properties of MSTs

	Slide 1: CS 7800: Advanced Algorithms
	Slide 2: Minimum Lateness Scheduling
	Slide 3: Possible Greedy Rules
	Slide 4: Greedy Algorithm: Earliest Deadline First
	Slide 5: Exchange Argument
	Slide 6: Exchange Argument
	Slide 7: Exchange Argument
	Slide 8: Exchange Argument
	Slide 9: Exchange Argument
	Slide 10: Exchange Argument
	Slide 11: Minimum-Lateness Scheduling Recap
	Slide 12: Network Design
	Slide 13: Minimum Spanning Trees (MST)
	Slide 14: Minimum Spanning Trees (MST)
	Slide 15: Cuts and Cycles
	Slide 16: Cut Property
	Slide 17: The “Only” MST Algorithm
	Slide 18: Borůvka’s Algorithm
	Slide 19: Borůvka’s Algorithm
	Slide 20: Borůvka’s Algorithm
	Slide 21: Kruskal’s Algorithm
	Slide 22: MST Recap

