CS 7800: Advanced Algorithms

Class 3: Greedy Algorithms |l
* Finish Minimum Lateness Scheduling
*  Minimum Spanning Tree
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Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
 Simplifyingassumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs?

* Job i starts at s; finishes f;, no jobs overlap

* The lateness of job i is max{f; — d;, 0}

* The lateness of a schedule is max{max{f; — d;, 0}}
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Possible Greedy Rules
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Greedy Algorithm: Earliest Deadline First

e Sortjobssothatd, <d, <---<d,

e Fori=1, ..., n:
* Schedule job i right afterjob i — 1finishes
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Exchange Argument
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Exchange Argument
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Exchange Argument
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Exchange Argument
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Exchange Argument

* Putting the steps together (a thought experiment)
* (1) The greedy schedule ¢ has no inversions
* (2) While O is not equalto G

* (2a) O has at least one inversion

* (2b) O has a pair of consecutive jobs i, j that
are inverted

* (2c) Swap the order of i, j to fix the inversion

\/° (§) Now O is equalto G butits lateness didn’t
increase, so O started at least as late as G




Minimum-Lateness Scheduling Recap

* There is an O(nlogn) greedy algorithm for the
minimum-lateness scheduling problem

e Sort by earliest deadline and schedule jobs
consecutively with no gaps

* Analyze via an exchange argument
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Network Design

* Build a cheap, connected graph

* We are given
 Asetof nodesV ={vq,..,v,}andedgesE SV XV
* aweight function on the edges w,

e Want to build a network to connect the nodes

* Every v;, v; must be connected
* Must be as cheap as possible

* Many variants of network design



Minimum Spanning Trees (MST)

* Input: a weighted graph ¢ = (V, E,{w,})
* Undirected, connected, weights may be negative
* All edge weights are distinct

* Output: a spanning tree T of minimum cost

* Aspanning tree of G is asubsetof T € E of the edges
such that (V,T) forms a tree

* CostofaspanningtreeT is the sum of the edge weights
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Cuts and Cycles

Cut: a subset of nodes S Cutset: edges w/ 1 endpoint in cut

CutS = {4,5, 8}
Cutset of S = (5,6), (5,7), (3,4), (3,5), (7,8)




Cut Property
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Minimum Spanning Trees (MST)
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The “Only” MST Algorithm
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Boruvka’s Algorithm
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Kruskal’s Algorithm
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MST Recap

* There is an 0(mlogn) greedy algorithm for
finding a minimum spanning tree
* There are actually several such algorithms
* Bespoke analysis using structural properties of MSTs



