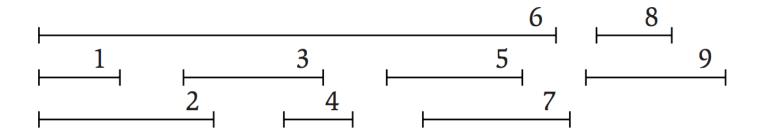
CS 7800: Advanced Algorithms

Class 2: Greedy Algorithms

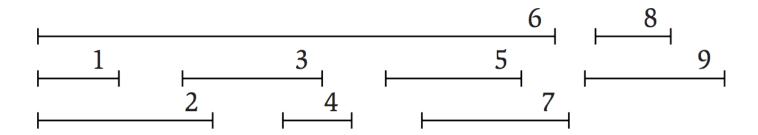
Jonathan Ullman September 9, 2025

Optimization


Greedy Algorithms

- What's a greedy algorithm?
 - You know it when you see it
 - Typically builds a solution in one "pass" over the data
- Why care about greedy algorithms?
 - Fastest and simplest algorithms imaginable
 - Greedy algorithms are often useful heuristics
 - Greedy algorithms often arise naturally
 - Interesting proof techniques
 - Induction ("Greedy Stays Ahead")
 - Exchange Argument
 - Duality

• ...

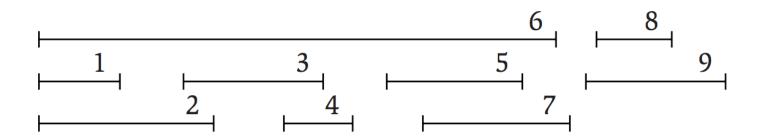

Interval Scheduling

- Input: n intervals (s_i, f_i)
- Output: a compatible schedule S with the largest possible size
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap
 - The size of the schedule is |S|

Generic Greedy Algorithm

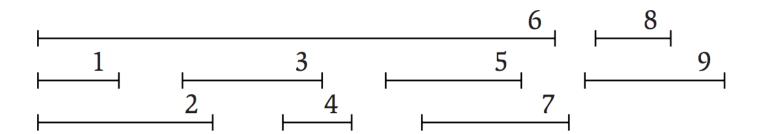
- Sort intervals by [...]
- Let S be empty
- For i = 1, ..., n:
 - If interval i doesn't create a conflict, add i to S
- Return S

Possibly Correct Greedy Rules

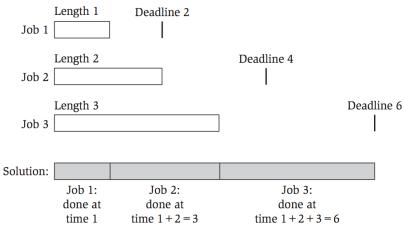

Choose the shortest interval first

Choose the interval with earliest start first

Choose the interval with earliest finish first


Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Let S be empty
- For i = 1, ..., n:
 - If interval i doesn't create a conflict, add i to S
- Return S


Interval Scheduling Recap

- There is an $O(n \log n)$ time greedy algorithm for the interval scheduling problem
 - Sort intervals by finish time, make one pass over the intervals, and add every compatible interval
 - Analyze using induction ("greedy stays ahead")

Minimum Lateness Scheduling

- ullet Input: n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs
 - Job i starts at s_i finishes f_i , no jobs overlap
 - The lateness of job i is $\max\{f_i d_i, 0\}$
 - The lateness of a schedule is $\max_i \{ \max\{f_i d_i, 0\} \}$

Generic Greedy Algorithm

Possible Greedy Rules


Greedy Algorithm: Earliest Deadline First

- Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
- For i = 1, ..., n:
 - Schedule job i right after job i 1 finishes

- Putting the steps together (a thought experiment)
 - (1) The greedy schedule G has no inversions
 - (2) While O is **not** equal to G
 - (2a) O has at least one inversion
 - (2b) *O* has a pair of consecutive jobs *i*, *j* that are inverted
 - (2c) Swap the order of i, j to fix the inversion
 - (3) Now O is equal to G but its lateness didn't increase, so O started at least as late as G

Minimum-Lateness Scheduling Recap

- There is an $O(n \log n)$ greedy algorithm for the minimum-lateness scheduling problem
 - Sort by earliest deadline and schedule jobs consecutively with no gaps
 - Analyze via an exchange argument

