CS 7800: Advanced Algorithms

Class 2: Greedy Algorithms

Jonathan Ullman
September 9, 2025

Optimization

Greedy Algorithms

* What’s a greedy algorithm?
* You know it when you see it
* Typically builds a solution in one “pass” over the data

* Why care about greedy algorithms?
* Fastest and simplest algorithms imaginable
* Greedy algorithms are often useful heuristics
* Greedy algorithms often arise naturally

* |Interesting proof techniques
* |Induction (“Greedy Stays Ahead”)
* Exchange Argument
* Duality

Interval Scheduling

* Input: n intervals (s;, f;)
* Qutput: a compatible schedule S with the largest
possible size
* Ascheduleisasubsetofintervals S C {1, ...,n}
* Aschedule S is compatible if notwo i, j € Soverlap
* The size of the scheduleis |S]

Generic Greedy Algorithm

* Sortintervals by [...]
* LetS be empty
e Fori=1, .., n:
e Ifintervali doesn’t create a conflict,addito S
* Return §

Possibly Correct Greedy Rules

e Choose the shortest intervalfirst

e Choose the interval with earliest start first

e Choose the interval with earliest finish first

Greedy Algorithm: Earliest Finish First

« Sortintervalssothatf; < f, <--- < f,
e LetS be empty
e Fori=1, .., n:
e Ifintervali doesn’t create a conflict,addito S
* Return §

Greedy Stays Ahead

Greedy Stays Ahead

Greedy Stays Ahead

Greedy Stays Ahead

Interval Scheduling Recap

* There is an O(nlogn) time greedy algorithm
for the interval scheduling problem

* Sortintervals by finish time, make one pass over
the intervals, and add every compatible interval

* Analyze using induction (“greedy stays ahead”)

Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
 Simplifyingassumption: all deadlines are distinct
* OQutput: a minimum-lateness schedule for the jobs

* Job i starts at s; finishes f;, no jobs overlap

* The lateness of job i is max{f; — d;, 0}

* The lateness of a schedule is max{max{f; — d;, 0}}
l

Length 1 Deadline 2
w1

Length 2 Deadline 4
Job 2 | | |

Length 3 Deadline 6
Job 3 | | |

Solution: ‘ | |
Job 1: Job 2: Job 3:

Generic Greedy Algorithm

Possible Greedy Rules

Greedy Algorithm: Earliest Deadline First

* Sortjobs sothatd, <d, <---<d,

e Fori=1,...,n:
* Schedule job i right afterjob i — 1finishes

Exchange Argument

Exchange Argument

Exchange Argument

Exchange Argument

Exchange Argument

Exchange Argument

* Putting the steps together (a thought experiment)
* (1) The greedy schedule ¢ has no inversions
* (2) While O is not equalto G
* (2a) O has at least one inversion

* (2b) O has a pair of consecutive jobs i, j that
are inverted

* (2c) Swap the order of i, j to fix the inversion

* (3) Now O is equal to G but its lateness didn’t
increase, so O started at least as late as G

Minimum-Lateness Scheduling Recap

* There is an O(nlogn) greedy algorithm for the
minimum-lateness scheduling problem

e Sort by earliest deadline and schedule jobs
consecutively with no gaps

* Analyze via an exchange argument

Job 1: Job 2: Job 3:
done at done at done at
time 1 time 1+2=3 time 1+2+3=6

	Slide 1: CS 7800: Advanced Algorithms
	Slide 2: Optimization
	Slide 3: Greedy Algorithms
	Slide 4: Interval Scheduling
	Slide 5: Generic Greedy Algorithm
	Slide 6: Possibly Correct Greedy Rules
	Slide 7: Greedy Algorithm: Earliest Finish First
	Slide 8: Greedy Stays Ahead
	Slide 9: Greedy Stays Ahead
	Slide 10: Greedy Stays Ahead
	Slide 11: Greedy Stays Ahead
	Slide 12: Interval Scheduling Recap
	Slide 13: Minimum Lateness Scheduling
	Slide 14: Generic Greedy Algorithm
	Slide 15: Possible Greedy Rules
	Slide 16: Greedy Algorithm: Earliest Deadline First
	Slide 17: Exchange Argument
	Slide 18: Exchange Argument
	Slide 19: Exchange Argument
	Slide 20: Exchange Argument
	Slide 21: Exchange Argument
	Slide 22: Exchange Argument
	Slide 23: Minimum-Lateness Scheduling Recap

