CS 7800: Advanced Algorithms

Class 2: Greedy Algorithms

Jonathan Ullman September 9, 2025

Administrivia

· Office hours

Current proposal: Wed 2-4pm

· Piazza

. Get desk fixed

Optimization

Objective function

Set of feasible solutions

Defined by the data real numbers

R

Set of feasible solutions

Goal: find x eX that maximizes f(x)

Goal': find max f(x)

Types of problems:

- Discrete us. continuous
- Convex objectives / Imear objectives
- Approximate / exact solution

Greedy Algorithms

- What's a greedy algorithm?
 - You know it when you see it
 - Typically builds a solution in one "pass" over the data
- Why care about greedy algorithms?
 - Fastest and simplest algorithms imaginable
 - Greedy algorithms are often useful heuristics
 - Greedy algorithms often arise naturally
 - Interesting proof techniques
 - Induction ("Greedy Stays Ahead")
 - Exchange Argument
 - Duality

• ...

Interval Scheduling

- Assume sixf. • Input: n intervals (s_i, f_i)
- Output: a compatible schedule S with the largest possible size
- Featible S A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$ A schedule S is compatible if no two $i, j \in S$ overlap

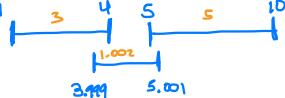
 - \S The size of the schedule is |S|

Generic Greedy Algorithm

- Sort intervals by [...]
- Let S be empty
- For i = 1, ..., n:
 - If interval i doesn't create a conflict, add i to S
- Return S

Possibly Correct Greedy Rules

• Choose the shortest interval first Desoft Look

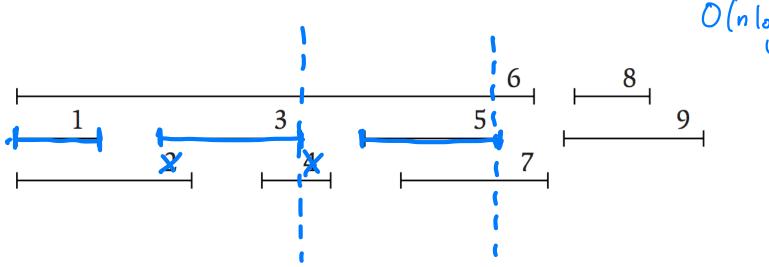


• Choose the interval with earliest start first Desnt work

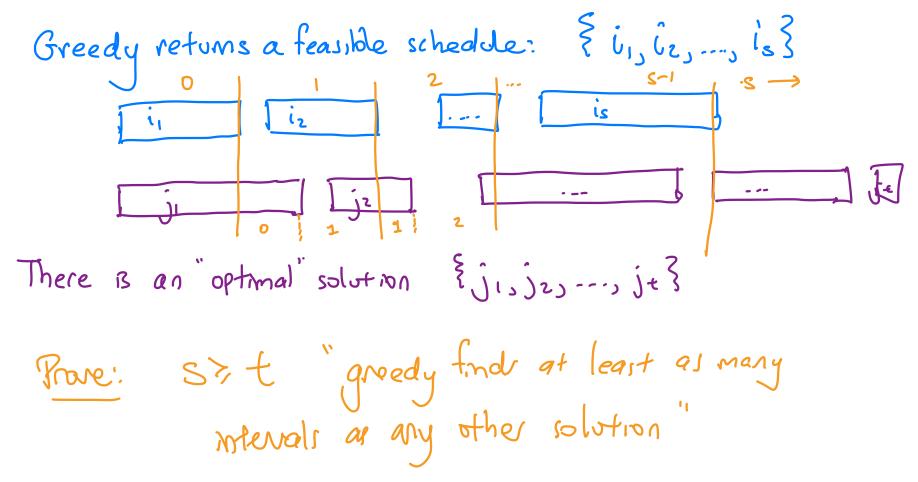
Choose the interval with earliest finish first

Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Let S be empty
- For i = 1, ..., n:
 - If interval i doesn't create a conflict, add i to S
- Return S



Greedy returns a feasible schedule: { i, iz, ..., is} There is an "optimal" solution {jisjes ---, jt} s>, t "groedy finds at least as many whereals are any other solution"



Greedy returns a feasible schedule: { is is solution { jis jes ---, je }

"Whenever greedy finishes a new interval, it has completed as many as the optimal schedule"

· for every k=1,...,s, fix & fix

"Whenever greedy finishes a new interval, it has completed as many as the optimal schedule"

· for every k=1,...,s, tik = tik

Why is this enough?

- · fis 4 fis
- "optimal has more intervals then greedy"

greedy.

greedy would have added jsti

optimal.

... contrad-ztion.

Claim:
"Whenever greedy finishes a new interval, it has completed as many as the optimal schedule"

O . D

· for every k=1,...,s, tik = tik

Proof: (By moduction)

(Base case) for k=1

The because greedy picks earliest finishing interval first

"Uhenever greedy finishes a new interval, it has completed as many as the optimal schedule" · for every k=1,...,s, tik = tik Proof: (By induction) (Inductive step) If $f_{i_k} \leq f_{j_k}$ then $f_{i_{k+1}} \leq f_{j_{k+1}}$

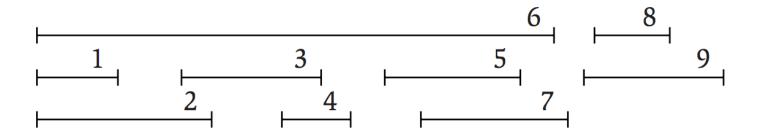
What would it look like if this start were false?

ik ik

, greedy looked of jrm before irm and would have proceed it

Interval Scheduling Recap

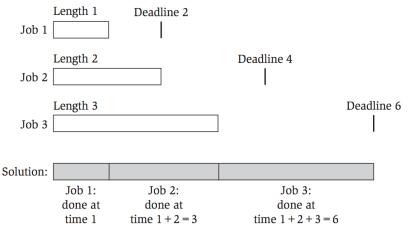
- There is an $O(n \log n)$ time greedy algorithm for the interval scheduling problem
 - Sort intervals by finish time, make one pass over the intervals, and add every compatible interval
 - Analyze using induction ("greedy stays ahead")



Minimum Lateness Scheduling

- Input: n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs Job i starts at s_i finishes f_i , no jobs overlap f_i

 - The lateness of job i is $\max\{f_i-d_i,0\}$
 - The lateness of a schedule is $\max\{\max\{f_i-d_i,0\}\}$

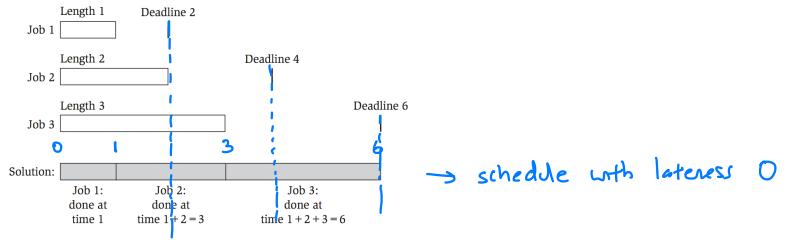


Quick observation: there is always an optimal solution where jobs are scheduled back-to-back

Minimum Lateness Scheduling

- Input: n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- Output: a minimum-lateness schedule for the jobs Job i starts at s_i finishes f_i , no jobs overlap f_i

 - The lateness of job i is $\max\{f_i-d_i,0\}$ The lateness of a schedule is $\max\{\max\{f_i-d_i,0\}\}$



Generic Greedy Algorithm

- · Soit jobs by [...]
 - · Schedule jobs consecutively

Possible greedy Mes:

- · sort by length (longost first)
- · sort by "urgency" (di-ti)
- · sort by deadline (earliest first)