
CS7800: Advanced Algorithms Fall 2025
Homework 6: Due Friday, December 5, 2025

Jonathan Ullman

Assigned Problems (Collected and Graded)

Problem 1 Children are constantly getting too big for their clothes and toys as they grow up. But since you

never know when a future child, a friend’s child, or even a grandchild might want them, you decide

to put all the toys in boxes in the attic instead of throwing them out. However, it’s difficult to climb

the steep ladder to the attic, so you need to make sure none of the boxes are too heavy, yet you still

want to use the fewest boxes possible.

You figure this is the sort of problem that algorithms can help with. You decide that you can

carry a box as long as it weighs less than 𝐶 for some 𝐶 ≥ 0. You also have 𝑛 items with weights

𝑤1, . . . ,𝑤𝑛 ∈ [0, 𝑀]. You’d like to find a way to allocate the items to 𝐵 boxes such that no box has

total weight more than 𝐶 and 𝐵 is as small as possible. Unfortunately this problem turns out to be

NP-hard (you don’t have to prove this fact), so you decide to try the following greedy approximation

algorithm where you consider the items in order, put as many as you can in the first box, then you

put as many items as you can in the second box, and so on. More formally,

• Let 𝑖 = 1 and 𝐵 = 0

• While 𝑖 ≤ 𝑛:
– Let 𝐵 = 𝐵 + 1 and open box 𝐵

– Let 𝑗 be the largest value such that𝑤𝑖 + · · · +𝑤𝑖+𝑗 ≤ 𝐶
– Put items 𝑖, . . . , 𝑖 + 𝑗 in box 𝐵 and close box 𝐵

– Let 𝑖 = 𝑖 + 𝑗 + 1

In this question you will prove that this greedy algorithm is a 2-approximation algorithm. That is,

if the smallest number of boxes that suffices to fit all 𝑛 items is OPT then the greedy algorithm uses

𝐵 ≤ 2 · OPT boxes.

1.1 Let 𝑓𝑘 be the amount of weight that the greedy algorithm puts into box 𝑘 for 𝑘 = 1, . . . , 𝐵.

Prove that, 𝑓𝑘 + 𝑓𝑘+1 > 𝐶 holds for every 𝑘 = 1, . . . , 𝐵 − 1.

1.2 Using 2.1, prove that

∑𝐵
𝑘=1

𝑓𝑘 ≥ 1

2
𝐶 (𝐵 − 1).

1.3 Complete the proof that the greedy algorithm uses 𝐵 ≤ 2 · OPT boxes.

Problem 2 In class we saw how to use linear programming to obtain an 𝑂 (ln𝑛)-approximation to SetCover,

but we didn’t have the tools from randomized algorithms to complete the analysis, so you will now

fill in the details yourselves!

Recall that in SetCover we have a domain {1, . . . , 𝑛} and sets 𝑆1, . . . , 𝑆𝑚 ⊆ {1, . . . , 𝑛} and our goal

is to find the smallest number of sets whose union covers the whole domain. The first step in our
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algorithm was to solve the following fractional set cover linear program:

min

𝑥1,...,𝑥𝑚

𝑚∑︁
𝑗=1

𝑥𝑖

s.t.

∑︁
𝑗 :𝑖∈𝑆 𝑗

𝑥 𝑗 ≥ 1 ∀𝑖 = 1, . . . , 𝑛

0 ≤ 𝑥 𝑗 ≤ 1 ∀𝑗 = 1, . . . ,𝑚

Let 𝑥★ be the optimal solution to the LP. Let Opt be the size of the optimal set cover and LPOpt =∑𝑚
𝑗=1
𝑥★𝑗 . Note that LPOpt ≤ Opt. Thus, our goal will be to round the LP to find a set cover 𝐶

whose size is

|𝐶 | ≤ 𝑂 (ln𝑛) · LPOpt ≤ 𝑂 (ln𝑛) · Opt.

In class we used the following randomized rounding algorithm to obtain a small set cover.

• For 𝑟 = 1, . . . , 𝑅 :

– Let 𝐶𝑟 = ∅
– For 𝑗 = 1, . . . ,𝑚 :

∗ Add 𝑆 𝑗 to 𝐶𝑟 with probability 𝑥★𝑗 , independently from all other iterations

• Return 𝐶 =𝐶1 ∪𝐶2 ∪ · · · ∪𝐶𝑅

The next few questions will guide you through proving the following theorem: We can set 𝑅 =

𝑂 (ln𝑛) so that the following are true: (1) the expected size of 𝐶 is at most 𝑂 (ln𝑛) · Opt, and (2)

the probability 𝐶 fails to be a cover is at most 1/𝑛.

2.1 Prove that for every round 𝑟 ∈ {1, . . . , 𝑅}, E( |𝐶𝑟 |) = LPOpt.

2.2 Prove that E( |𝐶 |) ≤ 𝑅 · LPOpt.
2.3 Prove that for every round 𝑟 ∈ {1, . . . , 𝑅}, and every element 𝑖 ∈ {1, . . . , 𝑛}

P (𝑖 is not covered by 𝐶𝑟 ) ≤ 1/𝑒.1

2.4 Prove that for every element 𝑖 ∈ {1, . . . , 𝑛}

P (𝑖 is not covered by 𝐶) ≤ 1/𝑒𝑅 .

2.5 Prove that

P (𝐶 is not a cover of {1, . . . , 𝑛}) ≤ 𝑛/𝑒𝑅 .

2.6 Conclude that we can set 𝑅 = 𝐾 ln𝑛 for some constant 𝐾 so that the theorem above is true.

Problem 3 In this problem you will build a streaming algorithm for a very simple problem: counting the

number of 1’s in a string of bits. You are given a stream of bits 𝑥1, . . . , 𝑥𝑛 and would like to compute

𝑠 =
∑𝑛

𝑖=1
𝑥𝑖 . Since the sum can be as large as 𝑛, computing it exactly requires log

2
𝑛 bits of space.

In this problem we will see a simple algorithm that approximates the sum with space complexity

proportional to log log𝑛.

Consider the following algorithm that outputs an estimator of 𝑠 , denoted 𝑠:

1Hint: You may find it useful to use the fact that (1 − 𝑥) ≤ 𝑒−𝑥 for every 𝑥 ≥ 0.
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• Let 𝑋 = 0

• For 𝑖 = 1, . . . , 𝑛: if 𝑥𝑖 = 1 increment 𝑋 to 𝑋 + 1 with probability 2
−𝑋

, otherwise do nothing

• Return 𝑠 = 2
𝑋 − 1

First we will analyze the space required to compute 𝑠 . Note that the number of bits required to

store 𝑋 at any given time is log
2
𝑋 , so we will try to argue that log

2
𝑋 does not get too big. Then

we will show that 𝑠 is a good estimate of the number of 𝑠

3.1 Prove that P(log
2
𝑋 ≥ 𝑘) ≤ 𝑠/2

2
𝑘

and conclude that the expected number of bits required to

store the value 𝑋 is 𝑂 (log log 𝑠).2

3.2 Prove by induction that E(2𝑋 ) = 𝑠 + 1, so E(𝑠) = 𝑠 . You may find it helpful to use the notation

𝑋𝑡 to refer to the value of 𝑋 after seeing the value 1 in the stream 𝑡 times.

3.3 Prove that Var (2𝑋 ) =𝑂 (𝑠2) where Var denotes the variance.
3.4 Prove that when𝑈 ,𝑉 are independent random variables Var (𝑈 +𝑉 ) = Var (𝑈 ) + Var (𝑉 ).
3.5 Suppose we run 𝑠 in parallel 𝑘 times on the same inputs independently to obtain 𝑠1, . . . , 𝑠𝑘 , and

then return the average 𝑠𝑘 = 1

𝑘

∑𝑘
𝑗=1
𝑠 𝑗 . Compute the mean and variance of 𝑠 .

3.6 Using Chebyshev’s inequality, conclude that for some constant 𝑘 that does not depend on 𝑠 or

𝑛, P( |𝑠𝑘 − 𝑠 | > 𝑠/100) ≤ 1/100.

Putting these steps together, we have proven that we can estimate 𝑠 to within ±1% relative error

using just 𝑂 (log log 𝑠) space in expectation.

2Hint: You may find the following fact useful: for a non-negative integer random variable E(𝑋 ) =∑∞
𝑖=1

P(𝑋 ≥ 𝑖).
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