
CS4810 / CS7800: Advanced Algorithms Fall 2022
Homework 6: Due Friday, December 9, 2022

Mahsa Derakhshan and Jonathan Ullman

Collaboration and Honesty Policy Reminder. Collaboration in the form of discussion is al-

lowed and encouraged. However, all forms of cheating are not allowed and will be penalized harshly.

These include, but are not limited to, copying parts of an assignment from a classmate, �nding

answers to problems on the internet or from anyone not enrolled in the class, and plagiarizing

from research papers or old posted solutions. A rule of thumb is that you should be able to walk

away from discussing a homework problem with no notes and write your solution on your own.

• You must write up all solutions by yourself, and may not share any written solutions, even if

you collaborate with others to solve the problem.

• You must identify all your collaborators. If you did not collaborate, write “no collaborators"

or something to that e�ect. You may have a maximum of two collaborators per assignment,

and collaboration is transitive (if you list a collaborator they must list you).

• Asking and answering questions in class forums (lectures, o�ce hours, Piazza) is allowed

and encouraged, and you do not need to list these interactions as collaborators.

• Seeking out alternative sources (e.g. classmates, textbooks, the internet) for general concepts

you need (e.g. greedy algorithms, probability) is allowed and encouraged.

Assigned Problems

Problem 1 In class we only studied hash tables that store a set of items (= {G1, . . . , G=} ⊆ U so that we can

check very quickly if an element G ∈ (or not. These data structures used close to the minimum

amount of space = log
2
|U|. In this problem you will build a data structure that can save space by

storing (approximately, meaning we allow for some mistakes when checking if G ∈ (.

Consider the following data structure:

• Choose : independent, uniformly random hash functions ℎ1, . . . , ℎ: : U → [<].1
• Create an array) [1 :<] and initialize) [9] = 0 for every 9 .

• For each G8 ∈ (and each ℓ = 1, . . . , : : set) [ℎℓ (G8)] = 1.

Given the array) , we can check to see if G ∈ (as follows:

• If) [ℎℓ (G)] = 1 for every ℓ = 1, . . . , : , return true, else return false.

Ideal random hash functions would require an unreasonable amount of space, but it makes it

possible to analyze this data structure, so we will ignore this issue for the rest of the question and

assume that the number of bits required for this data structure is just<.

1
That is, we choose each ℎ uniformly from the set of all functions fromU to [<].

1

1.1 Prove that this data structure has no false negatives, that is, if G ∈ (, then the data structure will

return true for every choice of the random hash functions ℎ1, . . . , ℎ: .

1.2 Calculate P() [9] = 0) after we have constructed the table) . You should allow (to be any set,

and the only thing random in your analysis should be the hash functions ℎ1, . . . , ℎ: .

1.3 Prove an upper bound on the probability of a false positive in terms of :,<, and =. That is, the

probability that the data structure returns true when we look for G ∉ (.
2

1.4 Show that for some choice of : and some choice of < = $ (= log(1/Y)) we can make the

probability of a false positive at most Y.

Putting these steps together, we can store an approximate version of (using just $ (= log(1/Y))
bits, while ensuring no false negatives and a false positive rate of Y.

Problem 2 In this problem you will build a streaming algorithm for a very simple problem—counting the

number of 1’s in a stream of bits. You are given a stream of bits G1, . . . , G= and would like to compute

B =
∑=
8=1
G8 . Since the sum can be as large as =, computing it exactly requires log

2
= bits of space.

In this problem we will see a simple algorithm that approximates the sum with space complexity

proportional to log log=.

Consider the following algorithm that outputs an estimator of B , denoted B̃:

• Let - = 0

• For 8 = 1, . . . , =: if G8 = 1 increment - to - + 1 with probability 2
−-

, otherwise do nothing

• Return B̃ = 2
- − 1

First we will analyze the space required to compute B̃ . Note that the number of bits required to

store - at any given time is log
2
- , so we will try to argue that log

2
- does not get too big.

2.1 Prove that P(log
2
- ≥ :) ≤ B/22

:

and conclude that the expected number of bits required to

store the value - is $ (log log B).3

Next we will show that we can use the estimator B̃ to obtain a good estimate of B .

2.2 Prove by induction that E(2-) = B + 1, so B̃ is an unbiased estimator of B . You may �nd it helpful

to use the notation -C to refer to the value of - after seeing the value 1 in the stream C times.

2.3 Prove that Var (2-) = $ (B2) where Var denotes the variance.

2.4 Prove that when* ,+ are independent random variables Var (* ++) = Var (*) + Var (+).

2.5 Suppose we run B̃ in parallel : times on the same inputs independently to obtain B̃1, . . . , B̃B: , and

then return the average B̄: = 1

:

∑:
9=1
B̃ 9 . Compute the mean and variance of B̄ .

2.6 Using Chebyshev’s inequality, conclude that P(|B̄: − B | > B/100) ≤ 1/100 for some constant :

that does not depend on B or =.

Putting these steps together, we have proven that we can estimate B to within ±1% error using just

$ (log log B) space in expectation.

2Hint: You may freely use the approximation (1 − 1/C)D ≈ 4−D/C .
3Hint: You may �nd the following fact useful: For a non-negative integer random variable E(-) = ∑∞

8=1
P(- ≥ 8).

2

