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Mahsa Derakhshan and Jonathan Ullman

Collaboration and Honesty Policy Reminder. Collaboration in the form of discussion is al-

lowed and encouraged. However, all forms of cheating are not allowed and will be penalized harshly.

These include, but are not limited to, copying parts of an assignment from a classmate, �nding

answers to problems on the internet or from anyone not enrolled in the class, and plagiarizing

from research papers or old posted solutions. A rule of thumb is that you should be able to walk

away from discussing a homework problem with no notes and write your solution on your own.

• You must write up all solutions by yourself, and may not share any written solutions, even if

you collaborate with others to solve the problem.

• You must identify all your collaborators. If you did not collaborate, write “no collaborators"

or something to that e�ect. You may have a maximum of two collaborators per assignment,

and collaboration is transitive (if you list a collaborator they must list you).

• Asking and answering questions in class forums (lectures, o�ce hours, Piazza) is allowed

and encouraged, and you do not need to list these interactions as collaborators.

• Seeking out alternative sources (e.g. classmates, textbooks, the internet) for general concepts

you need (e.g. greedy algorithms, probability) is allowed and encouraged.

Assigned Problems

The next two questions ask for dynamic programming algorithms. For each question, include:

• A description of the subproblems your algorithm will solve (e.g. “Let Opt(8) be the optimal...").

• A recurrence relating those subproblems and a justi�cation for its correctness.

• A pseudocode description of your algorithm for �nding the optimal solution.

• An analysis of your algorithm’s running time.

Problem 1 You are the head pastry chef for the coronation of King Charles III and you are given instructions

to prepare = desserts and a team of< pastry chefs to assign to work on the di�erent desserts. All

of the chefs are equally competent, but each chef can work on only one dessert, and you have to

decide how many chefs to assign to each dessert to make the most delicious feast possible.

After some careful thought, you have �gured out how delicious dessert 8 will be if 9 chefs are

assigned to it, and you quantify this with a deliciousness value 08, 9 ≥ 0. You may assume that more

chefs will make a dessert more delicious, so 08, 9+1 ≥ 08, 9 for every 8 and 9 . You may also assume

that the dessert can’t be made without at least one chef, so 08,0 = 0 for every 8 .

Design a dynamic programming algorithm to determine how many chefs to assign to each dessert

so that the sum of the deliciousness values is maximized.
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Problem 2 Alice and Bob play the following game. There is a row of = tiles with values G1, . . . , G= written

on them. Starting with Alice, Alice and Bob take turns removing either the �rst or last tile in the

row and placing it in their pile until there are no tiles remaining. For example, if Alice takes tile 1,

Bob can take either tile 2 or tile = on the next turn. At the end of the game, each player receives

a number of points equal to the sum of the values of their tiles minus that of the other player’s

tiles. Speci�cally, if Alice takes tiles � ⊆ {1, . . . , =} and Bob takes tiles � = {1, . . . , =} \�, then their

scores are, respectively, ∑
8∈�

G8︸︷︷︸
Alice

and

∑
8∈�

G8︸︷︷︸
Bob

For example, if the tiles are 10, 2, 8 then taking the �rst tile guarantees Alice a score of at least

10 + 2 = 12, whereas taking the last tile would only guarantee Alice a score of at least 8 + 2 = 10.

Design an algorithm to determine the maximum score that Alice can guarantee for herself, assuming

Bob plays optimally to maximize his score.
1

Problem 3 Let � be a �ow network with source B , sink C , and integer capacities 2 (4) on each edge 4 . Call an

edge 4 an acute edge in� if 4 belongs to every minimum B-C cut of� . There can be many minimum

cuts, so we can’t enumerate them, but there is an easier way to determine if an edge 4 is acute.

3.1 Prove that an edge 4 is acute if and only if increasing its capacity by 1 increases the maximum �ow

of the network by 1.

3.2 Using the result of 3.1, describe an algorithm that takes a graph � and a maximum �ow 5 in that

graph and determines if an edge 4 is acute. Your algorithm should be more e�cient than computing

a new maximum �ow from scratch—ideally just $ (<) time. Justify that your algorithm is correct

and analyze its running time.

Problem 4 Suppose that instead of capacities, we consider networks where each edge 4 has some non-negative,

integer-valued demand 3 (4) ≥ 0. We say that an (B, C)-�ow 5 is feasible if 5 (4) ≥ 3 (4) for every

edge 4 , in addition to satisfying the �ow-conservation constraints. A natural problem in this setting

is to �nd a feasible �ow of minimum value.

4.1 Describe an e�cient algorithm to compute a feasible (B, C)-�ow (not necessarily of minimum value).

Justify your algorithm’s correctness, and analyze its running time.

4.2 Suppose you have access to a subroutine MaxFlow that solves the maximum B-C-�ow problem.

Describe an e�cient algorithm to compute a minimum �ow in a network with edge demands. Your

algorithm should call MaxFlow exactly once.
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Justify that your algorithm is correct and analyze

its running time, including the time required to execute MaxFlow.

4.3 State and prove an analogue of the max-�ow/min-cut theorem for this setting. Do minimum �ows

correspond to maximum cuts for this problem?

1Hint: Note that the sum of their scores is always equal to the same value,

∑=
8=1 G8 , so if Bob is playing optimally to

maximize his own score, then he is also playing optimally to minimize Alice’s score.

2Hint: Start with the feasible (B, C)-�ow your algorithm �nds in 4.1 and try to remove as much �ow as possible while

still satisfying the demands.

2


