
CS 7800: Algorithms & Data

Lecture 23: Data Compression
• Huffman Codes

Jonathan Ullman
12-06-2022

Data Compression

• How do we store strings of text compactly?

• A binary code is a mapping from Σ → 0,1 ∗

• Simplest code: assign numbers 1,2, … , Σ to each
symbol, map to binary numbers of ⌈log! Σ ⌉ bits

• Morse Code:

Data Compression

• Letters have uneven frequencies!
• Want to use short encodings for frequent letters, long

encodings for infrequent leters

a b c d avg. len.
Frequency 1/2 1/4 1/8 1/8
Encoding 1 00 01 10 11 2.0
Encoding 2 0 10 110 111 1.75

Data Compression

• What properties would a good code have?

• Easy to encode a string

• The encoding is short on average

• Easy to decode a string?

Encode(KTS) = – ● – – ● ● ●

Decode(– ● – – ● ● ●) =

≤ 4 bits per letter (30 symbols max!)

Prefix Free Codes

• Cannot decode if there are ambiguities
• e.g. Encode(E) is a prefix of Encode(S)

• Prefix-Free Code:
• A binary enc: Σ → 0,1 ∗ such that

for every 3 ≠ 5 ∈ Σ, enc 3 is not a prefix of enc 5

• Any fixed-length code is prefix-free

Prefix Free Codes

• Can represent a prefix-free
code as a tree

• Encode by going up the tree (or using a table)
• d a b → 0 0 1 1 0 0 1 1

• Decode by going down the tree
• 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1

Huffman Codes

• (An algorithm to find) an optimal prefix-free code

• optimal = min"#$%&'()#$$ * len + = ∑+∈- .+ ⋅ len* 0
• Note, optimality depends on what you’re compressing
• H is the 8th most frequent letter in English (6.094%) but the 20th

most frquent in Italian (0.636%)

a b c d
Frequency 1/2 1/4 1/8 1/8
Encoding 0 10 110 111

Huffman Codes

• First Try: split letters into two sets of roughly equal
frequency and recurse
• Balanced binary trees should have low depth

a b c d e
.32 .25 .20 .18 .05

Huffman Codes

• First Try: split letters into two sets of roughly equal
frequency and recurse

first try
len = 2.25

optimal
len = 2.23

a b c d e
.32 .25 .20 .18 .05

Huffman Codes

• Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

a b c d e
.32 .25 .20 .18 .05

Huffman Codes

• Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

• Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length
• We’ll prove the theorem using an exchange argument

Huffman Codes
• Theorem: Huffman’s Alg produces an optimal prefix-free code
• (1) In an optimal prefix-free code (a tree), every internal node

has exactly two children

Huffman Codes
• Theorem: Huffman’s Alg produces an optimal prefix-free code
• (1) In an optimal prefix-free code (a tree), every internal node

has exactly two children

Huffman Codes
• Theorem: Huffman’s Alg produces an optimal prefix-free code
• (2) If 3, 5 have the lowest frequency, then there is an optimal

code where 3, 5 are siblings and are at the bottom of the tree

Huffman Codes
• Theorem: Huffman’s Alg produces an optimal prefix-free code
• Proof by Induction on the Number of Letters in Σ:
• Base case (Σ = 2): rather obvious

An Experiment

• Take the Dickens novel A Tale of Two Cities
• File size is 799,940 bytes

• Build a Huffman code and compress

• File size is now 439,688 bytes

Raw Huffman
Size 799,940 439,688

Huffman Codes

• Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

• Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

• In what sense is this code really optimal?

Entropy and Compression

• Given a set of frequencies (probability distribution)
the entropy is

• Suppose that we generate string 2 by choosing 3
random letters independently with frequencies .
• Any compression scheme requires at least 4 .

bits-per-letter to store 2 (as 3 → ∞)
• Huffman codes are truly optimal!

B 8 =C

(
8(⋅ log! A

1
8(

But Wait!

• Take the Dickens novel A Tale of Two Cities
• File size is 799,940 bytes

• Build a Huffman code and compress

• File size is now 439,688 bytes
• But we can do better!

Raw Huffman gzip bzip2
Size 799,940 439,688 301,295 220,156

What do the frequencies represent?

• Real data (e.g. natural language, music, images)
have patterns between letters
• U becomes a lot more common after a Q

• Possible approach: model pairs of letters
• Build a Huffman code for pairs-of-letters
• Improves compression ratio, but the tree gets bigger
• Can only model certain types of patterns

• Zip is based on an algorithm called LZW that tries to
identify patterns based on the data

