CS 7800: Algorithms & Data

Lecture 23: Data Compression
* Huffman Codes

Jonathan Ullman
12-06-2022

Data Compression
* How do we store strings of text compactly?

* A binary code is a mapping from X — {0,1}*

 Simplest code: assigh numbers 1,2, ..., |2| to each
symbol, map to binary numbers of [log,|X]|] bits
Aeo= Jo=== Soeoee

B=eoee K== T=
C=0=0 | e=00 U oo=-

. . D=oe M == Veeoeo=
Morse Code: g, Nee W ees
Fee=0 (OQmme X =00=-

G==—0 Poe==0 Y=@==-
Heooe Qm==0= 7Z==00

Qg +lo = 30 1°® Re-e

Data Compression

* Letters have uneven frequencies!

* Want to use short encodings for frequent letters, long
encodings for infrequent leters

_—-—-
v —
0 10 110 111

Data Compression
* What properties would a good code have?

* Easy to encode a string
Encode(KTS)=—e——o0 0 @

* The encoding is short on average
< 4 bits per letter (30 symbols max!)

* Easy to decode a string? Ae= Jo=== Seee
B=eoee K== T =
Decode(— e —|—e @ @) = C-e=-¢ Le-ee Ueoe-
D=ee M == Veoo=-
Ee N=e W e=-=-
Foee=0 OQmme X =00=-

G==—0 Poe==0 Y=@==-
Heeoeoeo Qm==0= 7 ==00

lee Re=-e

Prefix Free Codes

e Cannot decode if there are ambiguities

e e.g. Encode(E) is a prefix of Encode(S)

e Prefix-Free Code:

* Abinary enc: X — {0,1}" such that
for every x # y € X, enc(x) is not a prefix of enc(y)

* Any fixed-length code is prefix-free

Ae=-
B=oeoooe
C=0=0
D=ee
E e
Fee=o
G=—9
Heooe
KX

Seeo
T =
Uee=
Veoo=
We==
X=00=
Y=-0==

Q==0= /==900

Re=e

Prefix Free Codes

Code:
a—1
b—011
c—010
d—001
e—000

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
edab—-00110011

* Decode by going down the tree
+011 OOPBM\OlOlO“
W OUp O Ofukauy
b (N &

Huffman Codes

* (An algorithm to find) an optimal prefix-free code

eoptimal= min len(T) =) ,cs fi - leny (i)

prefix—free T

* Note, optimality depends on what you’re compressing
* His the 8" most frequent letter in English (6.094%) but the 20t

most frquent in Italian (0.636%) Cf\

_—-—- . @
0 10 110 111

! \ \ T S T
‘z-‘ BT TR O I A S L bk

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

* Balanced binary trees should have low depth

2 | b | c | d | e
.32 .25 .20 .18 .05
"2 2&_\(1.%-: .5

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

2 | b | c | d | e
.32 .25 .20 .18 .05

first try
len =2.25

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

—n—n—
o\ /\
/. =
oL —> 00
wv— Ol
> 10
A —>\10

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

 We'll prove the theorem using an exchange argument

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (1) In an optimal prefix-free code (a tree), every internal node
has exactly two children

/= <)

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (1) In an optimal prefix-free code (a tree), every internal node
has exactly two children

\ nook
Ny T = O/T}D\
| >
(

'\0)‘0“0

-

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x,y have the lowest frequency, then there is an optimal
code where x, y are siblings and are at the bottom of the tree

2 | bnow +he shape of the ree T, thu thee
% ajmdj uaj 4o label e lecves

ch@ Y o /O
& i O

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Base case (|X| = 2): rather obvious

* \aduekre Bptbesis (1517 k-0 -

-F("/ £,.72....2 l2\t=—(7 gn

R \/

ol ' & optinal for
\cnh) i? \"‘ (3 ? | l\ 4L, - 2, w3

‘en['ﬂ &ZP |m_,() F\Qﬂ (\ (‘? \en\'() ?'_‘

An Experiment

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

| char | frequency | code |
‘A 48165 1110
‘B’ 8414 | 101000
S 13896 | 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F* 13559 | 111111
‘G’ 12530 | 111110
“H? 38961 1001

| char | frequency | code |
ol e 41005 1011
I 710 | 1111011010
‘K’ 4782 11110111
d 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘0’ 46499 1101
P’ 9957 101001
‘@ 667 | 1111011001

* File size is now 439,688 bytes

| Raw [Huffman_
DA 799,940

439,688

| char | frequency | code l
‘R’ 37187 0101
‘S’ 37575 1000
a1 54024 000
a 16726 01001
‘v’ 5199 1111010
‘W’ 14113 00101
‘X’ 724 | 1111011011
D (o 12177 111100
A 215 | 1111011000

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* In what sense is this code really optimal?

Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

H() = fi-log (1)

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least H(f)
bits-per-letter to store S (as n — o0)
* Huffman codes are truly optimal!

But Wait! Ao A|

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

[char [ooy | _oode | (O ey ooce o ey coce
1]; 42411?2 101(1)(1)8 SJ2 710 | 1111011010 S’ 37575 1000
‘c 13896 00100 ‘K2 4782 11110111] 54024 000
D 28041 0011 B 22030 10101 2 i 16726 01001
B 74809 011 ‘M’ 15298 01000 A 5199 1111010
e 13559 | 111111 ‘N’ 42380 1100 ‘W’ 14113 00101
‘G’ 12530 | 111110 ‘O’ 46499 1101 ‘X’ 724 | 1111011011
e 38961 1001 ‘P 9957 101001 Y 121049 111100

‘Q 667 | 1111011001 B4 215 | 1111011000

* File size is now 439,688 bytes
e But we can do better!

| Raw [Huffman | gzip | bzip2
0 799940 439,688 301,295 220,156

What do the frequencies represent?

* Real data (e.g. natural language, music, images)
have patterns between letters

e U becomes a lot more common aftera Q

* Possible approach: model pairs of letters
* Build a Huffman code for pairs-of-letters
* Improves compression ratio, but the tree gets bigger
e Can only model certain types of patterns

* Zip is based on an algorithm called LZW that tries to
identify patterns based on the data

