CS 7800: Advanced Algorithms

Lecture 12: Intractability II

- More NP-completeness reductions
- Class conf, PSPACE

Instructor: Jonathan Ullman
Lecturer: Lydia Zakynthinou

$$
10-21-22
$$

The Gas NP
Def. Non-deterministic polynomial time
(For "he class of problems for which an efficient certifier. For every YEs, instance s, \exists certificate t of polynomial length w.r.t. s, such that given t and s, we can verify that s is a "YE S_{v} instance in polynomial time.)
Deft Y is NP-hard inf $\forall x \in N P \quad x \leq p y$
Def. Y is NP-complete iff Y is NP-hard oud $Y \in N P$.

NP-complete problems
EP 7 SET COMER
VERTEX COVER
$\stackrel{\leq}{\longrightarrow}$ INTEGER LINEAR PROGRAMMING $\uparrow \equiv p$
independent set

$$
\lceil\equiv p
$$

Any
problem $\underset{\rightarrow}{\leftrightarrows} 3-$ SAT

$$
Y \in N P
$$

Strategy to prove that x is NP-complete

(s) Prove $X \in N P$.
(2) find problem Y that is known to be $N P$-complete, and prove $Y \leqslant_{p} X:\left\{\begin{array}{c}* \\ (a) C o n s i d e r ~ a r b i t r a r y ~ i n p u t ~ I ~ t o ~\end{array}\right.$ "packin gen, "(covering ${ }_{b}$, "sequencing", "partitioning," ammericaln. problem y.
(ab) Construct a poly-time transformation of input I to a (special) instance I^{\prime} of X
(ac) Prove correctness:
(i) If I is a YES instance for $Y \Rightarrow I^{\prime}$ is a YES instance for X
(ii) If I^{\prime} is a YES instance for $X \Rightarrow I$ is a YES instance for Y

* Karp reduction. More general reductions are Cook reductions.

3D MATCHING is NP-complete
Input: Disjoint sets $x, y, z,|x|=|y|=|z|=n$. Set $T \leq x \times y \times z$ of ordered triples.
Output: $Y \in S$ iff \exists set of n triples $S \subseteq T$ s.t. each element in $X U Y Y Z$ is contained in exactly one of the triples.

0

3D HATCHING is NP-complete
Input: Disjoint sets $x, y, z,|x|=|y|=|z|=n$. Set $T \leq x \times y \times z$ of ordered triples.
Output: $Y \in S$ iff \exists set of n triples $S \subseteq T$ sit. each element in $X \cup Y \cup Z$ is contained in exactly one of the triples.

(1) $3 D$ MATCHING $\in N P:$ A collection of n triples from T that covers every element in XUYUZ exactly once is a poly-length certificate that can be checked in ply-fime.
(2) Find known NP-complete problem Y and prove $Y \leqslant_{p} 3 D$ MATCHNG.

3-SAT \leqslant_{p} SD MATCHING
Input: Disjoint sets $X, Y, Z,|x|=|y|=|Z|=n$. Set $T \leq X \times y \times z$ of ordered triples.
Output: $Y \in S$ iff \exists set of n triples $S \subseteq T$ sit. each element in $X \cup Y \cup Z$ is contained in exactly one of the triples.
$(2 a, b)$
Transform Input
Consider arbitrary input with n variables x_{1}, \ldots, x_{n} and k clauses C_{1}, \ldots, C_{k}
e.g. $\varphi=\underbrace{\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right)}_{C_{1}} \wedge \underbrace{\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)}_{C_{2}} \wedge \underbrace{\left(x_{1} \vee x_{2} \vee x_{3}\right)}_{c_{3}}$

Gadget for variable X_{i}

select even triples

$$
\Leftrightarrow x_{i}=1
$$ free odd triples

select odd triples

$$
\Leftrightarrow x_{i}=0
$$ free even triples

Can only cover the core exacly once if I select all odd or all even TF triples.

3-SAT $\leqslant p$ SD MATCHING

\Rightarrow Connect to an odd / evenlodd free free tips of same variable.
tip in variable $x_{1} / x_{2} / x_{3}^{\prime}$'s gadget.
Can only corer the core by selecting triple which includes free tip (setting variable to 0/1).

$$
\text { 3-SAT } \leqslant p \text { SD MATCHING }
$$

$$
c_{2}=x_{1} v \bar{x}_{2} v x_{3}
$$

$3-S A T \leq p$ MATCHING
our transformation is polynomial time.
(2C) Remains to prove the transformation is correct:

- If φ has a satisfying assignment, X, Y, Z, T have a perfect 3D Matching: Given sat -assignment, choose oddleven " $T F_{1}$, triples based on valves of the assignment on each $x_{i}=016 \quad \forall i \in[n]$. The core elements $A_{i}, B_{i} \forall i \in[n]$ are covered exactly once. Choose on triple per douse corresponding to free tip of variable that makes it true $(\exists \geqslant 1)$. The core elements $p_{j}, p_{j}^{\prime} \gamma_{j}[[k]$ ore covered exactly once.
Choose $(n-1) \cdot k$ "cleanup, triples that corres pond to $(n-1) k$ uncovered tips to cover them and the core of the cleanup top les, $q_{e}, q_{e}^{\prime} \forall \ell \in[(-1) k]$
- If X, y, z, T as defined above have a perfect 3D Matching, then p is satisfiable. Setting variable $x_{i}=0 / 1$ based on whether abtleven "TFI' triples were selected in the matening results in a satisfying assignment.
Why? Qaose cores Pi, pi must be covered so mathing must include one triple with a free tip from one of the gadgets of the variables involved in the clause. For this tip to be free, it must have been that the variable has been set to a value that satisfies the clause.

SUBSET SUM is NP-complete
Input: $w_{1}, \ldots, w_{n} \in \mathbb{N}$. Target W.
Output: $Y \in S$ iff \exists subset $S \leq[n]$ such that $\sum_{i=S} w_{i}=W$
(l) SUBSET SUM ENP
(2) find NP-complete problem Y and prove $Y \leq p S O B S E T$ SUM.

BD MATCHING \leqslant SUBSET SUM
Input: $w_{1}, \ldots, w_{n} \in \mathbb{N}$. Target W.
Output: $Y \in S$: ff \exists subset S of $\left\{w_{1}, \ldots, w_{n}\right\}$ that adds up to W.
(2ab)Transform input
Consider $X, y, z,|x|=H|=|z|=n$ and m triples $T \subseteq x \times y \times z$.
\forall triple $t=\left(x_{i}, y_{j}, z_{k}\right) \quad i, j, k \in[n] \times[n] \times[n]$, construct $3 n$-bit vector with 1 in position $i, n+j, 2 n+k$

Union of triples \approx addition where each position's digit corresponds to the number of times that element has been included in a triple... if addition does not incur any carries.

3DMATCHING $<$ SUBSET SUM
(ab)Transform input
Consider $x, y, z,|x|=H|=|z|=n$ and m triples $T \leqslant x \times y \times z$
\forall triple $t=\left(x_{i}, y_{j}, z_{k}\right) \quad i, j, k \in[n] \times[n] \times[n]$, construct $3 n$-bit vector with 1 in position $i, n+j, 2 n+k$

Choose base $d=m+1$ (no carries evenif an element is included in all m triples and we select (add) all of them)
Choose $W=\sum_{i=0}^{3 n-1}(m+1)^{i} \rightarrow \quad W=\frac{z}{\frac{11+\ldots 1}{n}} \overbrace{\frac{1, \ldots+1}{n}}^{y} \overbrace{\underbrace{1-1}_{n}}^{x}$

- Our transformation is polynomial time. selected exactly once.

SDMATCHNG
(ac) Remains to prove our reduction is correct

- If \exists perfect 3D MAtCHing (triples th. \ldots, t_{n}) then \exists numbers $\left(\omega_{L_{1}} \ldots, \omega_{t_{n}}\right)$ that have a t in every position so $\sum_{i=1}^{n} N_{t i}=W$.
- If $\exists w_{t_{1}}+\ldots+w_{t_{k}}=W$, then it must be that $k=n$ and each position has a 1 so each element is covered by 1 triple C not more becouse we wold have $j>1$ in that position).

SUBSET SUM is also a special case of KNAPSACK (SUBSET SUM Sp KNAPSACK)
\Rightarrow KNAPSACK is also NP-hard!
But also we have an algonthm that runs in $O(n \cdot W)$ time...

$$
\text { egg. m.logw } \xrightarrow{\text { e.g.W }}
$$

Deft. Algorithms whose running time depends on a quantity of the problem that could be exponentially larger than the length of the input are pseudo-polynomial time. NP-hard problems with such an algorithm are weakly NP-hard.

The Gas co-NP
Def. NP is the class of problems for which \exists an efficient certifier.
Def. Algorithm B is an efficient certifier for problem X if:

1. It is a polynomial time algorithm that takes input s and certificate t.
2. I polynomial P so that $s \in X$ ($Y \in s$ instance) iff $\exists t$ with length $|t| \leq p(|s|)$ for which $B(s, t)=Y \in S$.
[Asymmetric definition: $s \notin X$ (NO instance) iff \forall short $t \quad B(s, t)=N O$.
Def. Co-NP is the class of all problems X, whose complementary problem

$$
\bar{X} \in N P .
$$

II $s \in X \Leftrightarrow s \notin \bar{X}$

The Gas co-NP
Def. Co-NP is the class of all problems X, whose complementary problem $\bar{X} \in N P$.

II

$$
s \in x \Leftrightarrow s \Phi \bar{x}
$$

Obs. $X \in P \Leftrightarrow \bar{x} \in P$.
But we don't know $C O-N P \stackrel{?}{=} N P$
Obs. $P \subseteq N P \cap$ ca-NP. But we don't know $P \stackrel{?}{=} N P \cap \operatorname{co-NP}$. problems that hare "good charactenzations," egg. Bipartite matting, Max Flow (both $\in P$)

The Lass PSPACE
Def. PSPACE is the class of all problems that can be solved by an algorithm that uses an amount of space polynomial in the size of the input.

Obs.1. PSPSPACE. But we doris know P? PSPACE
Obs. 2 3-SATE SPACE

Are we doomed?

If $P \neq N P$, then a lot of interesting problems do not have a poly-time algorithm. We can still ask for polynomial time algorithms:
\rightarrow Approximation algorithms
${ }^{\prime}$ Randomized algorithms

We can also ark for algorithms that use small amount of memory: l sketching / streaming algorithms

