CS 7800: Advanced Algorithms

Lecture Il: Intractability I

- Polynomidl-time Reductions
- Class NP and NP-complete problems

Instructor: Jonathan Ullman
Lecturer: Lydia Zakynthinou

$$
10-18-22
$$

Polynomial-time Reductions
So far: Designed "efficient, algorithms for several problems.
run in polynomial time with respect to their input size

Some solutions were using known algorithms as a "black-boxn.

Today: Reductions

- Way to solve a problem given algorithm for another problem
- Help us compare the relative difficulty between problems

More generally:
Def. Y is polynomial-time reducible to x if y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to a "black box" that solves problem X. We write:

$$
y \leq s_{p} x
$$

(-) Suppose $Y \leqslant_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time. ($X \in P \Rightarrow Y \in P)$suppose $Y \leq_{p} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time. ($Y \notin P \Rightarrow X \notin P)$

VERTEX COVER \equiv =INDEPENDENT SET ($\bar{\beta}_{p}$ is \leqslant_{p} and \rangle_{p})

Input: Graph $G(V, E)$, integer
Output: $Y \in S$ iff G contains vertex cover SSV of size $\leq K$.

Input: Graph $G(V, E)$, integer k
Output: $Y \in S$ iff G contains independent set $S \subseteq V$ of size $\geqslant k$.

- No edges between modes in S.

All edges have at least one end in S.

Vertex cover of size $\leqslant 3$? $2,7,3$
Independent set of size $\geqslant 4$?

$$
\uparrow \quad 1,6,4,5
$$

Decision version of problem.

JERTEX CONER 三 I INDEPENDENT SET

Obs: S is an independent set iff V, S is a vertex cover.
\Rightarrow VERTEX CORR ${ }_{P}$ INDEPENDENT SET

Polynomial time
Correctness:
If $\exists V C$ of size $\leq k$, then \exists is of size $\geqslant k^{\prime}$.
If \exists is of size $\geqslant k^{\prime}$, then $\exists V C$ of size $\leq k$.

VERTEX CONER 三 I INDEPENDENT SET

Obs: S is an independent set iff V, S is a vertex cover.
\Rightarrow VERTEX COR \leq_{P} INDEPENDENT SET

\Rightarrow Similarly, INDEPENDENT SET \leqslant_{p} VERTEX COVER

Another equivalence with similar strategy: CLI QUE $\equiv P$ INDEPENDENT $S E T$
Obs: S is an independent set in G ff S is a clique in its complement \bar{G}.

VERTEX COVER \leq_{p} SET COVER

Input: Elements $U,|U|=n$. Collection of sets $S_{1}, \ldots, S_{m} \leq U$. Integer K.
Output: YES iff \exists collection of at most k of these sets whose union equals U.

$$
\begin{aligned}
& U=E \\
& S_{1}, \ldots, S_{m} ; S_{i}=\{e \in E: e=\{i, j] \times e=[j, i]\} \\
& K^{\prime}=k
\end{aligned}
$$

Polynomial time

VERTEX CONER S $S_{p} 0-1$ INTEGER LINEAR PROGRAMMING
Inpet: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, v \in \mathbb{R}$.
Otput: $Y \in S$ iff $\exists x \in\{0,1\}^{n}$ s.t. $c^{\top} X \leqslant V$ and $A x \geqslant b$.


```
    \ \equivp
INDEPENDENT SET
    IEp
chque
```

Prop:
Reductions are transitive: If $Y \leq p X$ and $X \leqslant_{p} Z$, then $Y \leq p Z$.

3-SAT \leq_{p} INDEPENDENT SET
Input: Set x of n Boolean variables x_{1}, \ldots, x_{n}. Causes C_{1}, \ldots, C_{k}, each of length 3 .
Output: YESiff \exists Truth assignment $v: x \rightarrow\{0,1\}$ such that all clauses evaluate to 1

$$
\text { e.g: } \varphi=\underbrace{\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right)}_{c_{1}} \wedge \underbrace{\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)}_{c_{2}} \wedge \underbrace{\left(x_{1} \vee x_{2} \vee x_{3}\right)}_{c_{3}}
$$

Given formula porer X with clauses $\left(L_{1}, \ldots, C_{k}\right.$, transform into input to Ind Set $G(V, E), K$.

Polynomial time \checkmark Correctness φ is satisfiable \Leftrightarrow independent set of size $\geqslant k$.

- Each clause C_{i} is a triangle: "clause gadget"
- Add extra edges to indicate conflicts between x_{j} and \bar{x}_{j}.

The Gas NP
Def. NP is the class of problems for which \exists an efficient certifier.
Def. Algorithm B is an efficient certifier for problem X if:

1. It is a polynomial time algorithm that takes input s and certificate t.
2. I polynomial P so that $s \in X$ ($Y \in s$ instance) iff $\exists t$ with length $|t| \leq p(|s|)$ for which $B(s, t)=y \in S$.

Hard to think of problems not in NP.

- NP ə 3-SAT, vertex Cover, Independent set....
- $P \subseteq N P \leftarrow$ easy to check solution easy to find section

But we don't know P ? $N P$

The class NP
Det Y is NP-hard iff $\forall x \in N P \quad x \leq p y$ \Rightarrow If Y is $N P$-hard and $Y \in P$ then $P=N P$.

Def. Y is $N P$-complete iff Y is NP-hard ound $Y \in N P$.

Theorem (Cook'71, levin'73): CIRCUIT-SAT is NP-complete. Also, CIRCUIT-SAT $\leq P 3-S A T$

Since $3-S A T \in N P, 3-S A T$ is NP-complete.

All these are in NP \rightarrow All are NP-complete.

Strategy to prove that x is NP-complete

(8) Prove $X \in N P$.
(2) find problem Y that is known to be $N P$-complete, and prove $Y \leqslant_{p} X:\{$. Consider arbitrary input I to "packin gen, "(covering ${ }_{b}$) "sequencing,", "partitioning," "numerical. problem y.

- Construct a poly-time transformation of input I to a (special) instance I^{\prime} of X and prove correctness:
- If I is a $Y \in S$ instance for $Y \Rightarrow I^{\prime}$ is a $Y \in S$ instance for X
- If I^{\prime} is a $Y E S$ instance for $X \Rightarrow I$ is a YES instarke for Y.
* Karp reduction. More general reductions are Cook reductions.

