CS7800: Advanced Algorithms

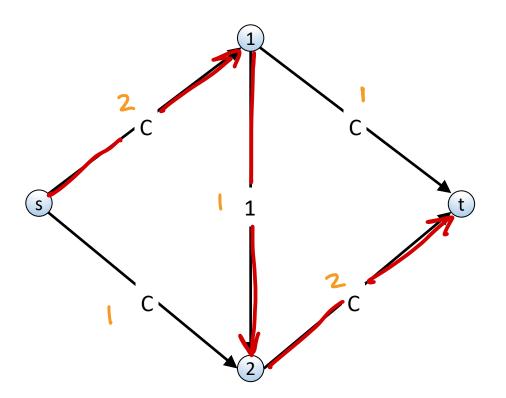
Network Flow II

- Heavy augmenting paths
- Short augmenting paths

Jonathan Ullman 09-30-22 Recap

Choosing (bad) augmenting paths

If we don't specify anything about the paths,
then we might need val
$$(f^{*})$$
 paths
 $(=\sum(nC))$



vall(f*) = 2C #of iterations can be 2C

```
The Capacity Scaling Algorithm
                                               "scale parameter"
 CapacityScaling(G,s,t, {c(e)})
        C \leftarrow \max_{e} \{c(e)\}, L \leftarrow C
        for e \in E: f(e) \leftarrow 0
        G_{f} is the residual graph
        while (L \ge 1)
            while (there is an s-t path P in G_f]

consisting of edges with c(e) \ge L) 

f \leftarrow Augment(G_f, P)

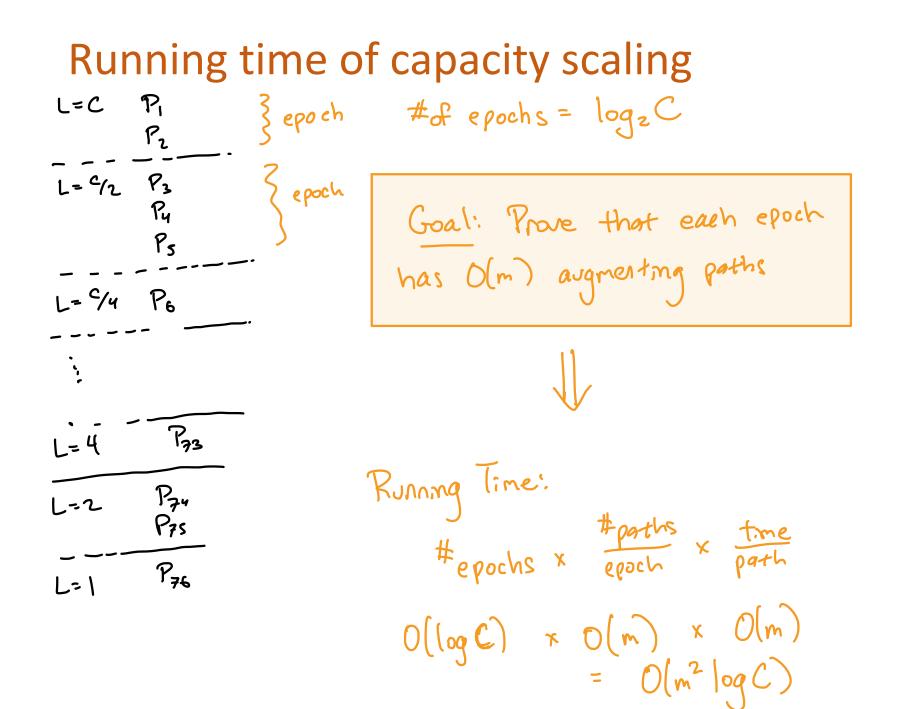
update G_f

L \leftarrow L/2

Let G_f(L) be

the residual \neg f

any edge of cap \angle L
        return f
```



Running time of capacity scaling

no augnesting 1 paths in GP

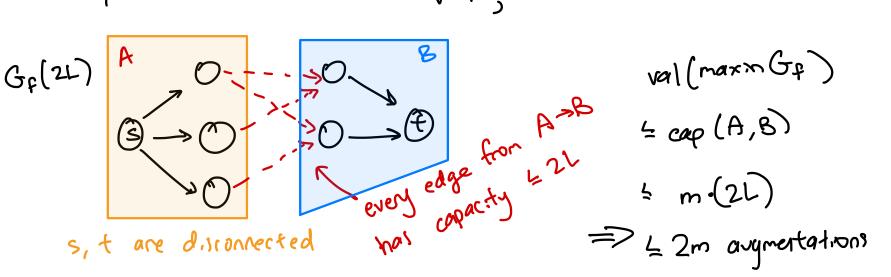
of capacity

tix some epoch L

PP

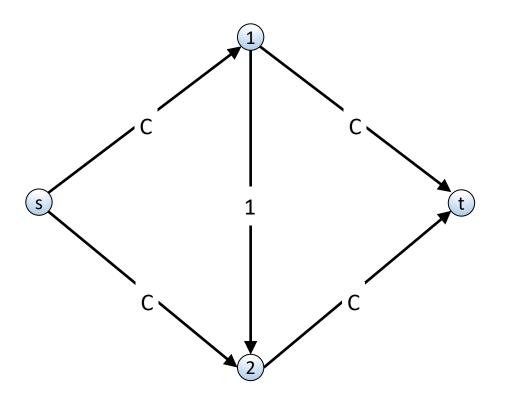
· At the end of epoch 22 Gp(2L) has no paths

. At the end of eporh 21 there is 17? flow left in Gp



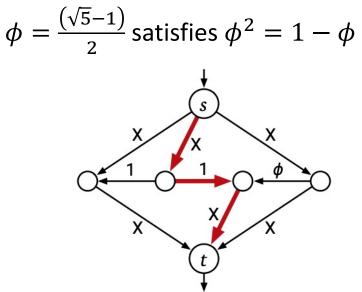
Choosing (bad) augmenting paths

Cardidate Rile: Choose the ang path with feverthops



Choosing (bad) augmenting paths

X is some large integer



1-Ø

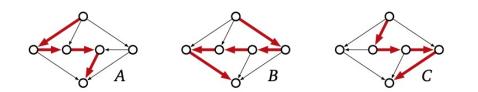
1-Ø

1-\$

0

Ø

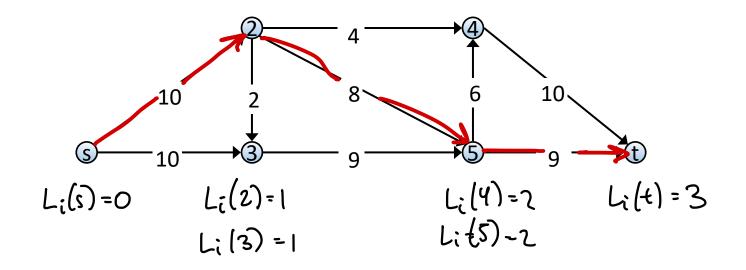
Alternate paths BCBA BCBA BCBA BCBA



Shortest Augmenting Path (Edmunds-Karp)

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities $\frac{nm}{2}$ augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!

- Let f_i be the flow after the *i*-th augmenting path
- Let $G_i = G_{f_i}$ be the *i*-th residual graph
- Let $L_i(v)$ be the distance from s to v in G_i
 - Recall that the shortest path in G_i moves layer-by-layer

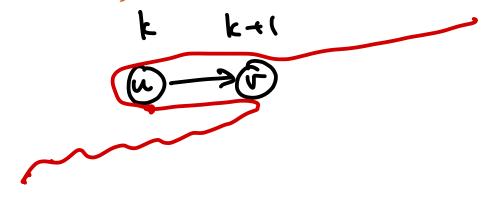


• Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear

- Key Property: each edge disappears at most $\frac{n}{2}$ times
 - Means that there are at most $\frac{mn}{2}$ augmentaitons

- Claim 1: for every $v \in V$ and every $i, L_{i+1}(v) \ge L_i(v)$
 - Obvious for v = s because $L_i(s) = 0$
 - Suppose for the sake of contradiction that $L_{i+1}(v) < L_i(v)$
 - Let *v* be the smallest such node
 - Let $s \sim u \rightarrow v$ be a shortest path in G_{i+1}
 - By optimality of the path, $L_{i+1}(v) = L_{i+1}(u) + 1$
 - By assumption, $L_{i+1}(u) \ge L_i(u)$

• Claim 2: If an edge $u \rightarrow v$ disappears from G_i and reappears in G_{j+1} then $L_j(u) \ge L_i(u) + 2$



- Claim 3: An edge (u, v) cannot reappear more than $\frac{n}{2}$ times
 - $0 \le L_i(u) \le n$
 - By Claim 2: length increases by 2 for each reappearance