CS7800: Advanced Algorithms

Network Flow II

- Heavy augmenting paths
- Short augmenting paths

Jonathan Ullman
09-30-22

Recap
(1) Defined max s^{-t} flow and min st cut problems
(2) Ford-Fulkeson Algonthm for soling max flow - add augmenting paths in the residual graph
(3) Max Flow-Min Cut Theorem

- ar $O(m)$ time for finding a min cot given G, f^{*}
(4) In graphs with integer capacities $c(e) \in\{1,2, \ldots, c\}$ Ford-Fulterion teminales after $\leq \operatorname{val}\left(f^{*}\right) \leq n C$ paths

Choosing (bad) augmenting paths
If we don specify anything abort the paths, then we might need val $\left(f^{-*}\right)$ paths $(=\Omega(n C))$

$$
\operatorname{val}\left(f^{*}\right)=2 C
$$

\# of iterations can be 2C

The Capacity Scaling Algorithm

CapacityScaling ($G, s, t, f(e)\})$
$C \leftarrow \max _{e}\{c(e)\}, L \leftarrow C$
for e $\in E: f(e) \leftarrow 0$
G_{f} is the residual graph
while ($\mathrm{L} \geq 1$)
while (there is an st path P in G_{f}^{7} Let $G_{f}(L)$ be consisting of edges with $c(e) \geq L$) $\mathrm{f} \leftarrow$ Augment $\left(\mathrm{G}_{\mathrm{f}}, \mathrm{P}\right)$ update G_{f}
$\mathrm{L} \leftarrow \mathrm{L} / 2$
return f the residual -1 any edge of cap $<L$ removed.

Running time of capacity scaling $\begin{array}{ll}L=C & P_{1} \\ P_{2}\end{array} \quad \xi$ epoch \quad of epochs $=\log _{2} C$

Running Time:

$$
\begin{aligned}
& \text { \#epochs } \times \frac{\text { \#parths }}{\text { epoch }} \times \frac{\text { time }}{\text { path }} \\
& O(\log C) \times O(m) \times O(m) \\
& =O\left(m^{2} \log C\right)
\end{aligned}
$$

Running time of capacity scaling
fix sone epoch L

- At the end of epoch $2 L$ $G_{p}(2 L)$ has no paths
- At the end of epoch 2 L there is $\leq ? ?$ flow left in Gp

Choosing (bad) augmenting paths
Cardidale Rile: Choose the aug path with fevest hops

Choosing (bad) augmenting paths

X is some large integer
$\phi=\frac{(\sqrt{5}-1)}{2}$ satisfies $\phi^{2}=1-\phi$

Alternate paths BCBA BCBA BCBA BCBA

$$
1-\phi \quad 1-\phi
$$

$1-\varnothing$ ।
\varnothing

Shortest Augmenting Path (Edmunds-Karp)

- Find the augmenting path with the fewest hops
- Can find shortest augmenting path in $O(\mathrm{~m})$ time using BFS
- Theorem: for any capacities $\frac{n m}{2}$ augmentations suffice
- Overall running time $O\left(m^{2} n\right)$
- Works for any capacities!

Shortest Augmenting Path

- Let f_{i} be the flow after the i-th augmenting path
- Let $G_{i}=G_{f_{i}}$ be the i-th residual graph
- Let $L_{i}(v)$ be the distance from s to v in G_{i}
- Recall that the shortest path in G_{i} moves layer-by-layer

Shortest Augmenting Path

- Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear
- Key Property: each edge disappears at most $\frac{n}{2}$ times
- Means that there are at most $\frac{m n}{2}$ augmentaitons

Shortest Augmenting Path

- Claim 1: for every $v \in V$ and every $i, L_{i+1}(v) \geq L_{i}(v)$
- Obvious for $v=s$ because $L_{i}(s)=0$
- Suppose for the sake of contradiction that $L_{i+1}(v)<L_{i}(v)$
- Let v be the smallest such node
- Let $s \leadsto u \rightarrow v$ be a shortest path in G_{i+1}
- By optimality of the path, $L_{i+1}(v)=L_{i+1}(u)+1$
- By assumption, $L_{i+1}(u) \geq L_{i}(u)$

Shortest Augmenting Path

- Claim 2: If an edge $u \rightarrow v$ disappears from G_{i} and reappears in G_{j+1} then $L_{j}(u) \geq L_{i}(u)+2$

- Claim 3: An edge (u, v) cannot reappear more than $\frac{n}{2}$ times
- $0 \leq L_{i}(u) \leq n$
- By Claim 2: length increases by 2 for each reappearance

