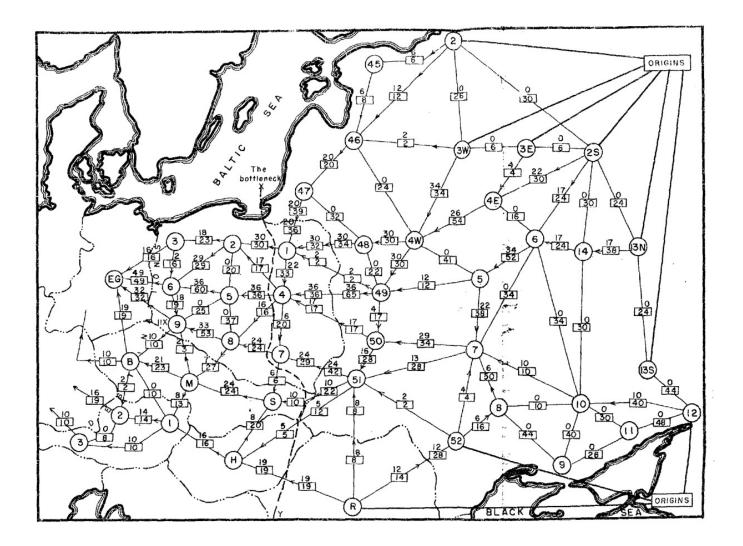
CS7800: Advanced Algorithms

Network Flow I

- Ford Fulkerson
- Duality

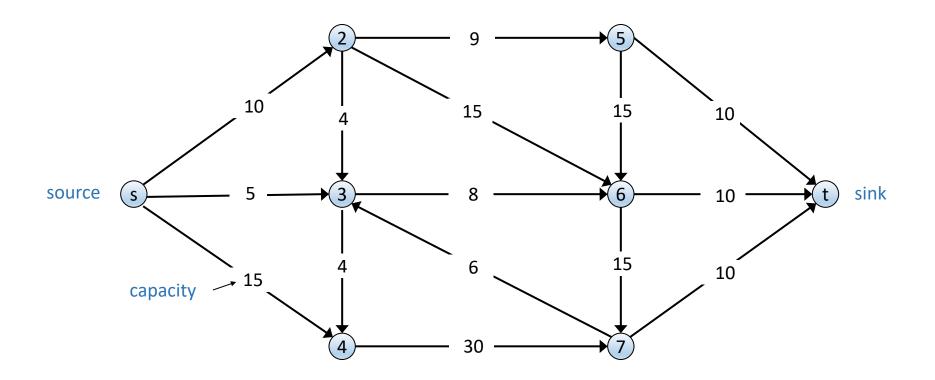
Jonathan Ullman 09-27-22

Flows and Cuts



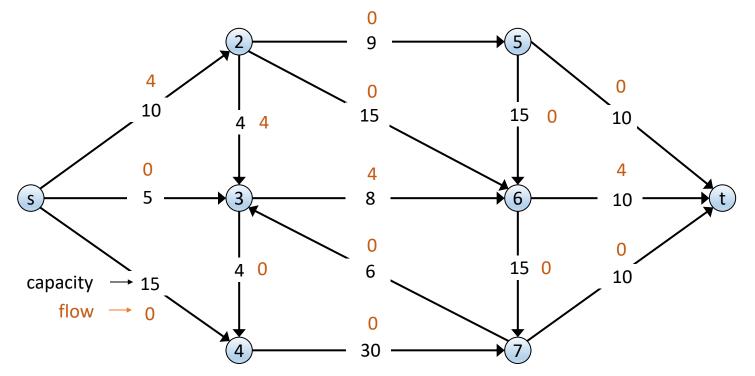
Flow Networks

- Directed graph G = (V, E)
- Two special nodes: source *s* and sink *t*
- Edge capacities c(e)



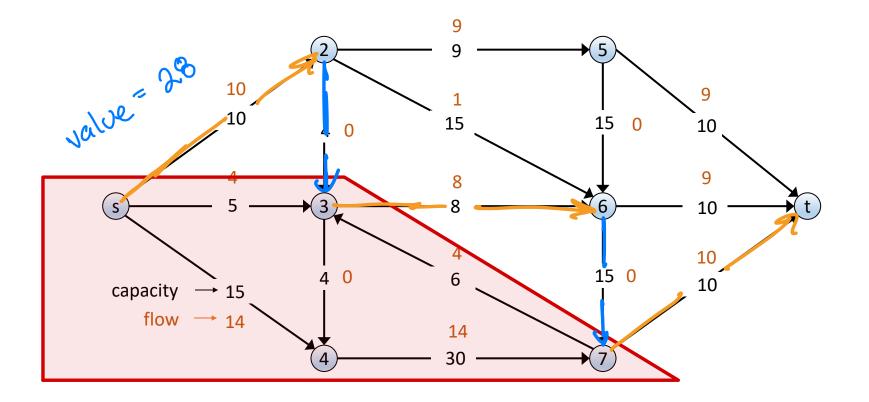
Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (non-negativity, capacity)
 - For every $v \in E$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (flow conservation) except for s,t
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$



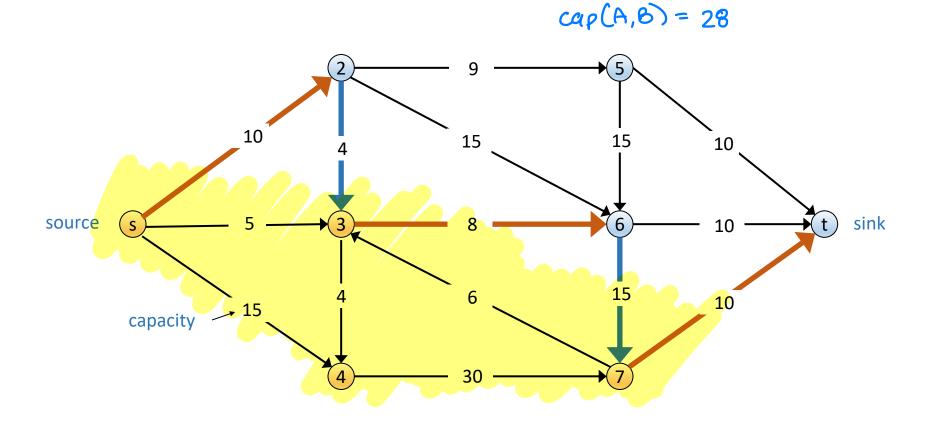
Maximum Flow Problem

Given $G = (V, E, s, t, \{c(e)\})$, find an s-t flow of max. value



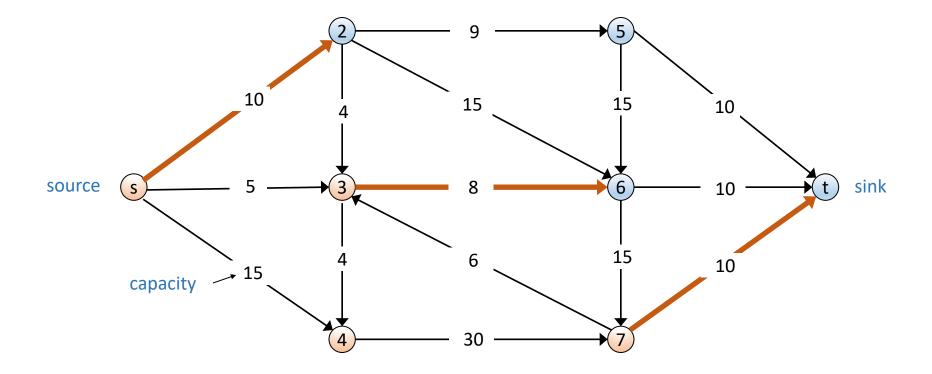
Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A, B) is $cap(A, B) = \sum_{e \text{ out of } A} c(e)$



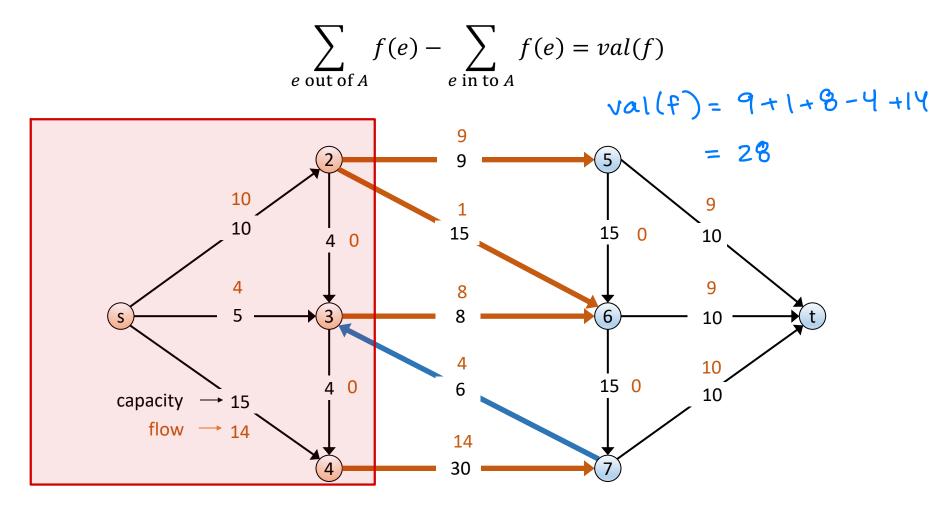
Minimum Cut problem

Given $G = (V, E, s, t, \{c(e)\})$, find an s-t cut of min. capacity



Flows vs. Cuts

• Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s



Weak MaxFlow-MinCut Duality

• For any s-t flow f and any s-t cut (A, B) $val(f) \le cap(A, B)$

$$val(f) = \sum_{e \text{ out of s}} f(e)$$

$$= \sum_{e \text{ out of s}} f(e) - \sum_{e \text{ out of A}} f(e)$$

$$e \text{ out of A} \qquad e \text{ into A}$$

$$i \sum_{e \text{ out of A}} c(e) - \sum_{e \text{ out of A}} f(e) \qquad (\text{out capacity})$$

$$e \text{ out of A} \qquad e \text{ into A}$$

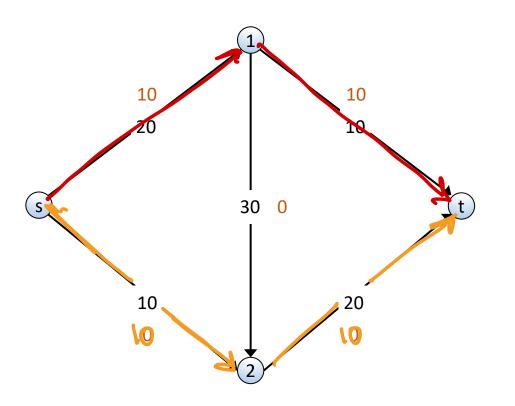
$$i \sum_{e \text{ out of A}} c(e) - O = cap(A,B) \qquad (\text{non-negativity})$$

$$f f \text{ is a flow } (A, B) \text{ is a out and } mal(f) = cap(A, B) \text{ then}$$

If f is a flow, (A, B) is a cut, and val(f) = cap(A, B), then
 f is a max flow and (A, B) is a min cut

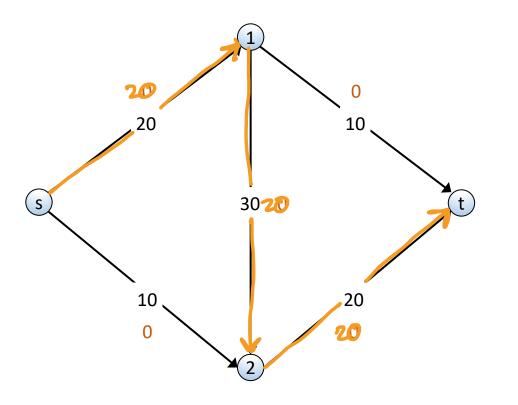
Augmenting Paths

Given a network G = (V, E, s, t, {c(e)}) and a flow f, an augmenting path P is an s → t path such that f(e) < c(e) for every edge e ∈ P



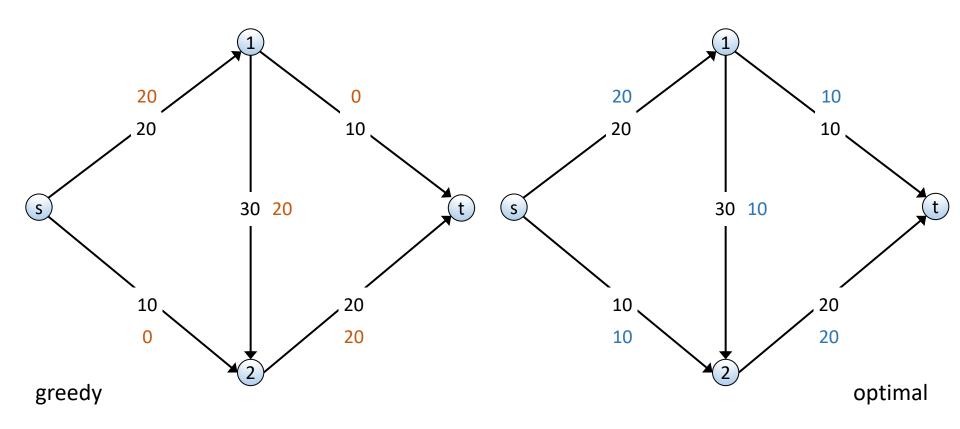
Greedy Max Flow

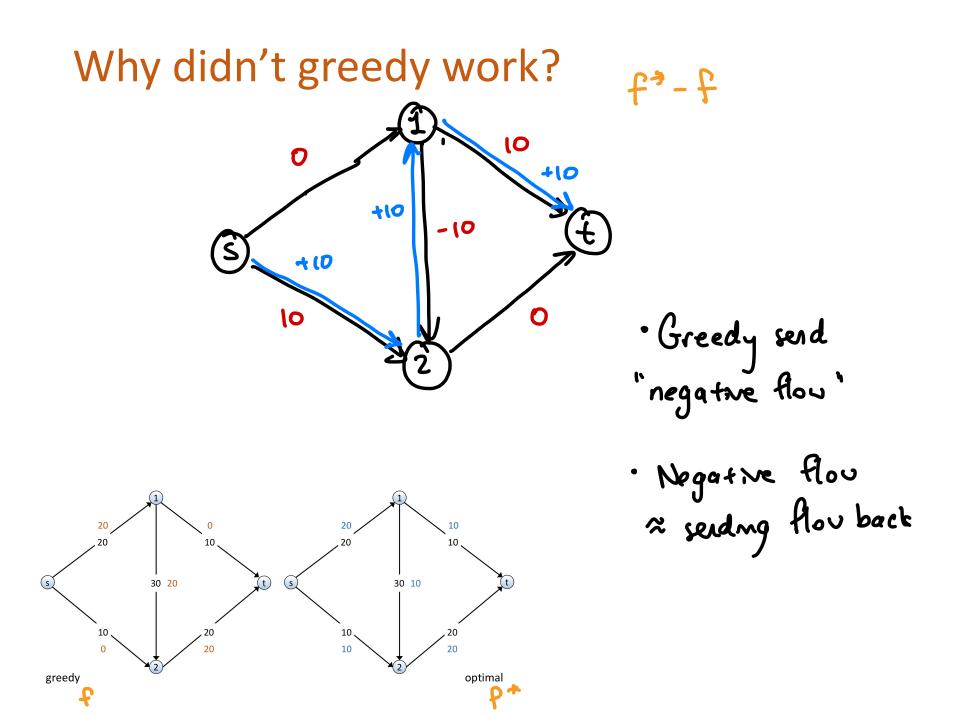
- the only feasible flow you know
- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P
- Repeat until you get stuck



Does Greedy Work?

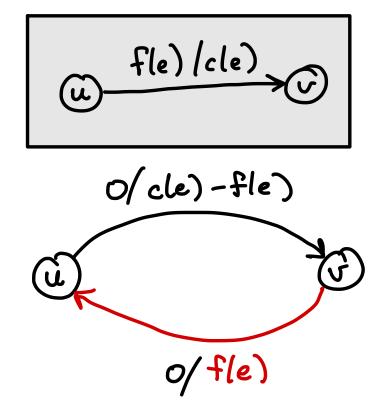
- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?





Residual Graphs

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e)
- Residual edge
 - Allows "undoing" flow
 - e = (u, v) and $e^{R} = (v, u)$.
 - Residual capacity



- Residual graph $G_f = (V, E_f)$
 - Edges with positive residual capacity.

•
$$E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}.$$

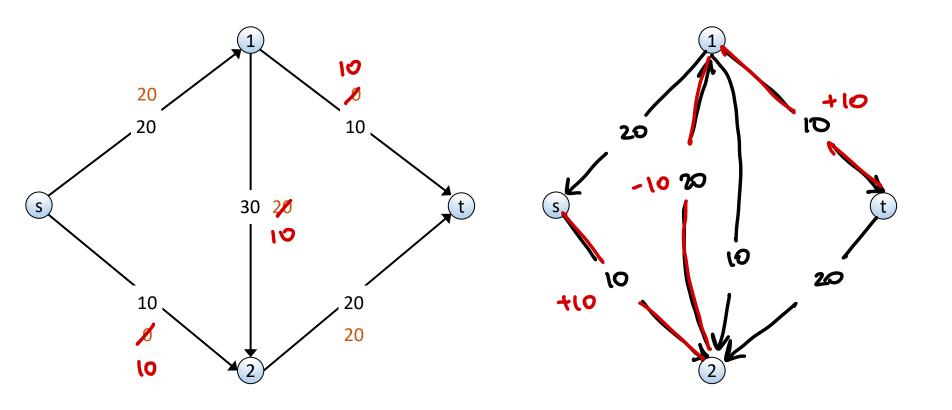
Given G, f it's Olm time to compute GF

Augmenting Paths in Residual Graphs

- Let G_f be a residual graph Any path where every edge has >O capacity
- Let P be an augmenting path in the residual graph
- Fact: $f' = \text{Augment}(G_f, P)$ is a valid flow

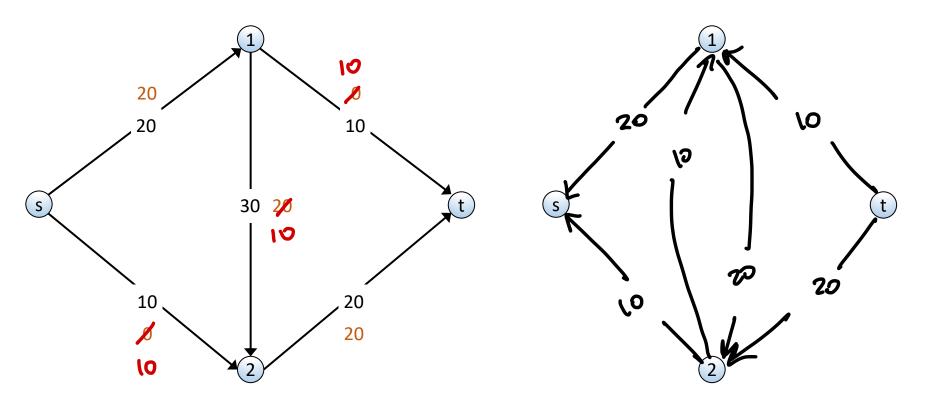
Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

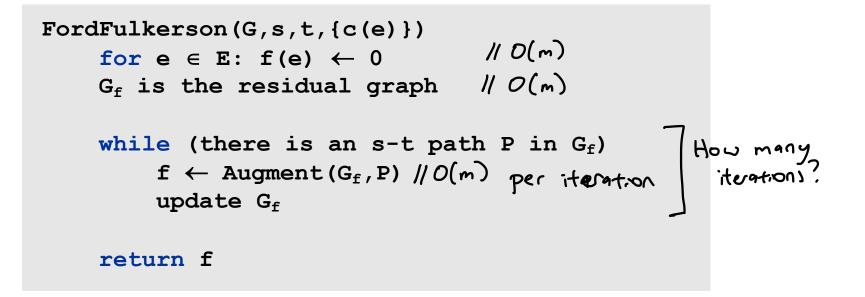


Ford-Fulkerson Algorithm

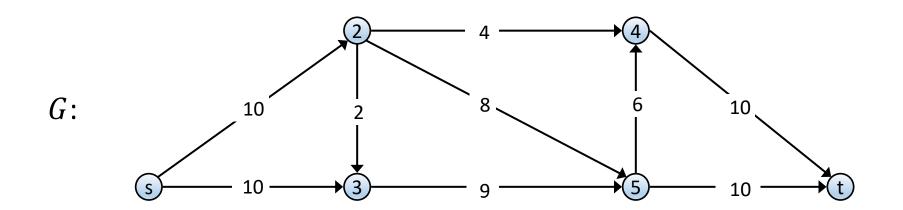
- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck



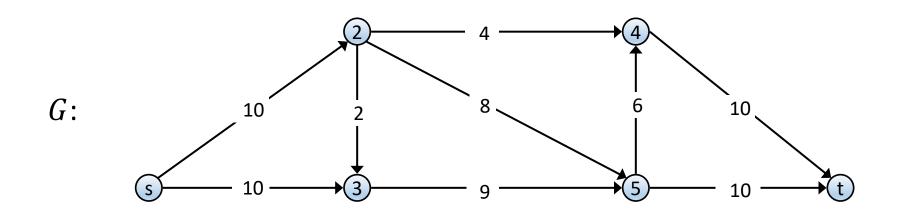
Ford-Fulkerson Algorithm



Ford-Fulkerson Demo



Ford-Fulkerson Demo



S

3

2

5

(4)

t

What do we want to prove?

Termination of Ford-Fulkerson

- **Theorem:** the following are equivalent for all f
 - There exists a cut (A, B) such that val(f) = cap(A, B)**1**. **2**.
 - Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

- **Theorem:** f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f
- Strong MaxFlow-MinCut Duality: The value of the max s-t flow equals the capacity of the min s-t cut
- We'll prove that the following are equivalent for all f
- J 1. There exists a cut (A, B) such that val(f) = cap(A, B)J 2. Flow f is a maximum flow 3. There is no augmenting path in G_f

- $(3 \rightarrow 1)$ If there is no augmenting path in G_f , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes

- $(3 \rightarrow 1)$ If there is no augmenting path in G_f , then there is a $\operatorname{cut}(A,B)$ such that $\operatorname{val}(f) = \operatorname{cap}(A,B)$
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes
 - Key observation: no edges in G_f go from A to B

• If
$$e ext{ is } A \to B$$
, then $f(e) = c(e)$

• If
$$e ext{ is } B \to A$$
, then $f(e) = 0$

= cap(A,B)

original network

$$\begin{array}{c} A \\ f(e) = c(e) \\ f(e)$$

Running Time of Ford-Fulkerson

