
CS7800: Advanced Algorithms

Network Flow I
• Ford Fulkerson
• Duality

Jonathan Ullman
09-27-22

Flows and Cuts

Flow Networks
• Directed graph ! = #, %
• Two special nodes: source & and sink '
• Edge capacities ()

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows
• An s-t flow is a function *) such that

• For every ! ∈ #, 0 ≤ & ! ≤ ' ! (non-negativity, capacity)
• For every (∈ #, ∑! "# $% & & ! = ∑! %'$ %(& & ! (flow conservation)

• The value of a flow is +,- * = ∑! "#$ "% & *)

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

except for St

Maximum Flow Problem
Given ! = (#, %, &, ', {(())}), find an s-t flow of max. value

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0¥
→

÷

Cuts
• An s-t cut is a partition (3, 4) of # with & ∈ 3 and ' ∈ 4

• The capacity of a cut (3, 4) is (,6 3, 4 = ∑! "#$ "% ' ()

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

cap(A.B) = 28

Minimum Cut problem
Given ! = (#, %, &, ', {(())}), find an s-t cut of min. capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows vs. Cuts
• Fact: If * is any s-t flow and (3, 4) is any s-t cut, then the

net flow across (3, 4) is equal to the amount leaving s

(
! "#$ "% &

) * − (
! '($" &

) * = -./())

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Val (f) = 9+1+8 -4+14

= 28

Weak MaxFlow-MinCut Duality

• For any s-t flow * and any s-t cut (3, 4) +,- * ≤ (,6 3, 4

• If * is a flow, (3, 4) is a cut, and +,-(*) = (,6(3, 4), then
* is a max flow and (3, 4) is a min cut

Va / (f) = E f /e)

e out of s

= I fle) - I fle)

eeovtofA e. into A

≤ E ele) - I fle) (nom capacity)
eat of A e. into A

(non -negativity)
≤ I ele) - O =cap(A.B)
eat OFA

Augmenting Paths
• Given a network ! = (#, %, &, ', ()) and a flow *, an

augmenting path 8 is an & → ' path such that *()) < (())
for every edge) ∈ 8

s

1

2

t

10

10

10 10

0 0

0

20

20

30

a÷÷

Greedy Max Flow
• Start with *) = 0 for all edges) ∈ %
• Find an augmenting path 8
• Repeat until you get stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

y

the only feasible flow you know

it
E.

Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

Why didn’t greedy work?
f-→ - f

⑤

• Greedy send② "

negative flow
"

°

Negative flow

≈ sending flow
back

f f
*

Residual Graphs
• Original edge: ! = +, (∈ #.

• Flow &(!), capacity '(!)

• Residual edge
• Allows “undoing” flow
• ! = +, (and !) = (, + .
• Residual capacity

• Residual graph /* = 0, #*
• Edges with positive residual capacity.
• #) = ! ∶ & ! < ' ! ∪ !* ∶ ' ! > 0 .

⑥⊖

⑥dᵈ"③
-

Off/e)

Given G
,
f it 's 01mL time to compete Gf

Augmenting Paths in Residual Graphs
• Let !2 be a residual graph
• Let 8 be an augmenting path in the residual graph
• Fact: *’ = Augment(!2, 8) is a valid flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Any path where
every edge

has >0 capacity
&

Ford-Fulkerson Algorithm
• Start with *) = 0 for all edges) ∈ %
• Find an augmenting path 8 in the residual graph
• Repeat until you get stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

9

✓ - 10 20

+.

•

To
:

"

Ford-Fulkerson Algorithm
• Start with *) = 0 for all edges) ∈ %
• Find an augmenting path 8 in the residual graph
• Repeat until you get stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

9

÷
.

To

To

Ford-Fulkerson Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c(e)})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

11 Olm)

11 ◦(m)

" ◦(m) per iteration] How manyiterations ?

Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062!:

Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!!:

What do we want to prove?

• Termination ?

• Correctness / optimality ?

•

Running t.me ?

• Finding min cuts
?

Termination of Ford-Fulkerson
Assume all capacities are Egos 0 ≤ ele) ≤ C

① Value of the max flow

val (ft) ≤ nc

②
Every augmentation

adds ≥ I to val (f)

⇒ #of iterations is ≤ nc

Correctness of Ford-Fulkerson
• Theorem: the following are equivalent for all *

1. There exists a cut (6, 7) such that (89 & = '8:(6, 7)
2. Flow & is a maximum flow
3. There is no augmenting path in /*

Be

strong max flow mm at duality

Correctness of Ford-Fulkerson
• Theorem: * is a maximum s-t flow if and only if there is no

augmenting s-t path in !2

• Strong MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

• We’ll prove that the following are equivalent for all *
1. There exists a cut (6, 7) such that (89 & = '8:(6, 7)
2. Flow & is a maximum flow
3. There is no augmenting path in /*
iii.

Correctness of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in !2, then there is a

cut (3, 4) such that +,-(*) = (,6(3, 4)
• Let 6 be the set of nodes reachable from ; in /*
• Let 7 be all other nodes

↑
notice sc-A.tt B

Correctness of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in !2, then there is a

cut (3, 4) such that +,-(*) = (,6(3, 4)
• Let 6 be the set of nodes reachable from ; in /*
• Let 7 be all other nodes
• Key observation: no edges in /* go from 6 to 7

• If) is 3 → 4, then *) = ()
• If) is 4 → 3, then *) = 0

original network

s

t

A Bfle)=0

f(e)=cle)

val(f) = I fle) - I fle)
eat#A

e ,n+oA
He)=O

He)=cCe)
= -2 ele) - I 0

eovtof A eirto A

=

cap (A.B)

Running Time of Ford-Fulkerson
New Problem : Integer max flow
-

Given G- (V
,
E
,
S
,-4 { cle)}) with integer ele)

find a flow wth integer
the)

FF solves integer max Ftw

largest capacity
Running Time:(for Integer

Max Flow)
-

6
• 0 (m-•vailf-7) = 01mn C)

• 01mn) if all capacities are \

Summary

