CS 7800: Advanced Algorithms

Lecture 1: Intoduction + Stable Matching

Jonathan Ullman 09-09-2022

Me

Jonathan Ullman

- Call me Jon
- Research: privacy for ML/stats
- Office: 623 ISEC
- Office Hours: T 3:15-5:15

The TA Team

• Konstantina Bairaktari

- Office Hours: Th 3:00-5:00
- Location: TBD

Rose Silver

- Office Hours: F 3:30-5:30
- Location: TBD

Algorithms

What is an algorithm?

An explicit, precise, unambiguous, mechanicallyexecutable sequence of elementary instructions for solving a computational problem.

-Jeff Erickson

Algorithms

What is CS 7800: Advanced Algorithms?

The study of how to reason about and talk about computational problems.

- Formalize computational problems
- Learn about algorithmic techniques
- Rigorously prove properties of algorithms
- Rigorously compare algorithms
- Communicate precisely about algorithms

Course Structure

- HW x6 = 50%
- Midterm = 20%
- Final = 30%

Grades on a curve

- A/A- ≈ 50%
- B+/B ≈ 50%
- Rarely B- and lower

Course Structure

- Algorithm Design by Kleinberg and Tardos
 - We'll follow this closely in the 1st half
 - Can easily find copies

- Algorithms by Jeff Erickson
 - Useful for review, alternate perspective, and some advanced topics
 - Will use this sometimes in the 2nd half
 - Free on the web

Algorithms

Jeff Erickson

Homework

- 6 HW Assignments (approximately)
 - Every two weeks (approximately)
 - Due Fridays 11:59pm
 - Late days: total of 6, but max of 2 per assignment
 - Other extensions granted rarely
- Algorithms and math questions, no programming
- Review HW1 out now, due Friday 9/16!

Homework Policies

I strongly encourage you to work together

- You can collaborate with up to two people per HW
- You must list all collaborators on your solutions
- You must write all solutions by yourself
- Rules of thumb:
 - Should be able to leave meetings without any notes
 - You should be able to explain anything you submit

Homework Policies

- Homework must be typeset in LaTeX!
 - Many good resources available
 - Many good editors available (Overleaf, TexStudio)
 - I will provide source to get you started

The Not So Short Introduction to IAT_EX 2_{ε}

by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl

Version 5.06, June 20, 2016

Homework Policies

- Homework will be submitted on Gradescope!
 - Entry code: K33NED

Igradescope

Discussion Forum

- We will use Piazza for discussions
 - Ask questions and help your classmates
 - Please use private messages sparingly!
 - piazza.com/northeastern/fall2022/cs7800

Course Website

http://jonathan-ullman.github.io/cs7800-f22

Home	Course Info		Schedule
	CS 7800: Advance Fall 202	d Algorith 2	nms
ırse Schedule			
ing Code: KT = Klei	nberg Tardos		
Date	Торіс	Reading	Notes
Fri 9/9/22	Lecture 1: Introduction Course Welcome Stable Matching 	_	HW1 Out [pdf] [tex]
<u></u>	[slides]		
Tue 9/13/22	Lecture 2: Greedy Algorithms I Interval Scheduling Minimizing Lateness [slides before] [slides after]	KT 4.1-4.2	
Fri 9/16/22	Lecture 3: Greedy Algorithms II [slides before] [slides after]		HW1 Due HW2 Out
Tue 9/20/22			
Fri 9/23/22			
Tue 9/27/22			

Fri

9/30/22

Introductions?

Stable Matching

National Residency Matching Program

- National system for matching US medical school graduates to medical residencies
 - Roughly 40,000 doctors per year
 - Assignment is almost entirely algorithmic

David Gale (1921-2008) PROFESSOR, UC BERKELEY

Lloyd Shapley PROFESSOR EMERITUS, UCLA

Alvin Roth PROFESSOR, STANFORD

(Centralized) Labor Markets

Matchings

$$n \text{ doctors}$$
 $n \text{ hospitals / jobs}$
 $\{d_i: h_7 > h_{13} > h_2 - ... > h_{84} \\ \exists i \in L^7$
 $\{h_i: d_{162} > d_{112} > d_4 \\ \exists \dots > d_q \\ \exists i \in L^7$
 $Erz: M6H > BID$

	1st	2nd	3rd	4th	5th
MGH	Bob	Alice	Dorit	Ernie	Clara
BW	Dorit	Bob	Alice	Clara	Ernie
BID	Bob	Ernie	Clara	Dorit	Alice
MTA	Alice	Dorit	Clara	Bob	Ernie
СН	Bob	Dorit	Alice	Ernie	Clara

4th 5th 1st 2nd 3rd Alice CH MGH MTA BW BID Bob BID BW MTA MGH CH Clara MTA BW BID CH MGH Dorit MGH CH MTA BID BW Ernie MTA BW CH BID MGH

Matchings

$$M = \{ (d_{6}, h_{37}), (d_{8}, h_{2}), \dots \}$$

Ask the Audience

• Either find a stable matching or convince yourself that there is no stable matching

M= { (Claro, MGH), (BU, Bob), (BID, Alze)}

Gale-Shapley Algorithm préférences foi n doctors, n horpitals Input: µ= р While (there is an unmatched hospital h); - h "offers" to their favorite of they haven't offered to yet () d has no job -> add (h,d) to ju @ d has a job at h' and h' > h -> do nothing 3 d has a job at h' but h > h' -> remare (h', d). add (h,d) Output ju

Gale-Shapley Demo

	1st	2nd	3rd	4th	5th
MGH	Bob	Alice	Dorit	Ernie	Clara
BW	Dorit	Bob	Alice	Clara	Ernie
BID	Bob	Ernie	Clara	Dorit	Alice
MTA	Alice	Dorit	Clara	Bob	Ernie
СН	Bob	Dorit	Alice	Ernie	Clara

	1st	2nd	3rd	4th	5th
Alice	СН	MGH	BW	MTA	BID
Bob	BID	BW	MTA	MGH	СН
Clara	BW	BID	MTA	СН	MGH
Dorit	MGH	СН	MTA	BID	BW
Ernie	MTA	BW	СН	BID	MGH

Ask the Audience Observations

• Either find a stable matching or convince yourself that there is no stable matching

Has to terminate
Any doctor that gets an offer null always hold an offer
Hospitals go down" O Doctors go vp"

Observations

Gale-Shapley Algorithm: Analysis

1

Real World Impact

TABLE I STABLE AND UNSTABLE (CENTRALIZED) MECHANISMS				
Market Stable Stable Still in use (halted unraveling)				
American medical markets				
NRMP	yes	yes (new design in '98)		
Medical Specialties	yes	yes (about 30 markets)		
British Regional Medical Markets	•	•		
Edinburgh ('69)	yes	yes		
Cardiff	yes	yes		
Birmingham	no	no		
Edinburgh ('67)	no	no		
Newcastle	no	no		
Sheffield	no	no		
Cambridge	no	yes		
London Hospital	no	yes		
Other healthcare markets		•		
Dental Residencies	yes	yes		
Osteopaths (<'94)	no	no		
Osteopaths (\geq '94)	yes	yes		
Pharmacists	yes	yes		
Other markets and matching proc	esses			
Canadian Lawyers	yes	yes (except in British Columbi since 1996)		
Sororities	yes (at equilibrium)	yes		

Table 1. Reproduced from Roth (2002, Table 1).

Real World Challenges

• Doctors \leftrightarrow Hospitals

- Have to deal with two-body problems
- Have to make sure doctors do not game the system
- Kidneys ↔ Patients
 - Not all matches are feasible (blood types, immunity)
 - Certain pairs must be matched
- Students ↔ Public Schools
 - Siblings, walking zones, diversity
- Reform Rabbis ↔ Synagogues
 - No idea, just a fun example

